Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur Assoziation von Polymorphismen in regulatorischen Elementen der Lipoproteinlipase und des Apolipoprotein E mit KHK und Triglyzerid-Stoffwechsel
Autor:Schell, Johanna Kristina
Weitere Beteiligte: Schäfer, Jürgen (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0718
URN: urn:nbn:de:hebis:04-z2011-07185
DOI: https://doi.org/10.17192/z2011.0718
DDC: Medizin
Titel (trans.):analysis of associations of polymorphisms in regulatory elements of lipoproteinlipase und apolipoprotein E with coronary heart disease and triglycerid-level
Publikationsdatum:2011-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Promotor <Genetik>, -93T/G, -93T/G, Very-, SNP, hepatic control regions, Genregulation, -95G/T, -95G/T, Triglyceride, multienhancer, hepatic control regions, Lipoprotein-Lipase, Apolipoprotein E, Koronare Herzkrankheit, multienhancer

Zusammenfassung:
Durch Atherosklerose bedingte Kardiovaskuläre Erkrankungen sind die Haupttodesursache in der westlichen Welt. Neben der familiären Disposition, dem Geschlecht und dem Lebensalter gibt es zahlreiche beeinflussbare Risikofaktoren für diese Erkrankungen. Zusätzlich zum Nikotin-Konsum, der arteriellen Hypertonie und dem Diabetes mellitus Typ II spielen dabei vor allem die Lipidparameter wie der Cholesterin- und der Triglyzerid-Spiegel eine entscheidende Rolle. Ziel dieser Arbeit war es, genregulatorische Elemente der Lipoproteinlipase und des Apolipoprotein E, die beide eine entscheidende Rolle bei der Hydrolyse von Triglyzeriden spielen, auf Mutationen zu untersuchen, die die Expression dieser Proteine verändern und somit Einfluss auf den Triglyzerid-Spiegel ausüben. Apolipoprotein E vermittelt die Bindung von Triglyzerid-reichen Lipoproteinen an den VLDL-Rezeptor, die Lipoproteinlipase senkt durch Hydrolyse von Triglyzeriden den Triglyzerid-Spiegel im Blut und erhöht gleichzeitig durch Unterstützung der Übertragung von diversen Lipiden den HDL-Cholesterin-Spiegel. Beide Effekte sind verantwortlich für die insgesamt eher atheroprotektive Wirkung der Lipoproteinlipase im Gefäßbett. In atherosklerotischen Plaques dagegen entwickelt die LPL atherogene Wirkung, durch Erhöhung der RLP-Konzentration werden die Endothel-Eigenschaften verändert und LDL- und VLDL-Partikel werden in der subendothelialen Matrix der Plaques zurückgehalten, wo sie entscheidend zur Entwicklung der Atherosklerose beitragen. Die Expression der LPL wird durch ihren Promotor gesteuert, die Expression des Apolipoprotein E in der Leber wird durch die Hepatic Control Regions (HCR) 1 und 2 kontrolliert, in reifen Makrophagen und Adipozyten durch die Multienhancer (ME) 1 und 2. Wir untersuchten diese Sequenzen in der DNA von 264 Patienten mit einem BMI < 25 kg/m2 des Kollektivs der Marburger KHK-Präventions-Allianz, 134 Patienten hatten erhöhte Triglyzeride (> 150 mg/dl), 130 hatten normale Triglyzeride (< 150 mg/dl). Die Sequenzen wurden zunächst durch eine PCR amplifiziert und anschließend in der DGGE auf Mutationen gescreent, auffällige Proben sowie unauffällige Proben als Kontrolle wurden sequenziert. Aus den Daten der Marburger KHK-Präventions-Allianz entnahmen wir die Lipidprofile, den BMI sowie den Koronarstatus und einige weitere Risikofaktoren der Patienten und werteten sie statistisch auf Unterschiede zwischen Mutations- und Wildtyp-Allelträgern aus. In den regulatorischen Elementen des Apolipoprotein E konnten wir keine Mutationen nachweisen, diese Sequenzen scheinen stark konserviert zu sein, auch in der Literatur werden keine funktionell relevanten SNPs beschrieben. Im Promotor der LPL fanden wir 2 bereits in der Literatur vorbeschriebene SNPs, -93T/G und -95G/T. -95G/T hatte in der Literatur bei In-vitro-Untersuchungen keine Auswirkungen auf die Aktivität des LPL-Promotors, über die Auswirkungen in-vivo gibt es keine Berichte. Bei unseren insgesamt 6 Patienten, die diesen SNP vorwiesen, war das Allel -95T assoziiert mit erniedrigten Triglyzeriden und einem leicht erhöhten HDL-Cholesterin (n.s.), beides Hinweise auf eine erhöhte Promotor-Aktivität, kein Unterschied konnte beobachtete werden bezüglich der KHK-Prävalenz. Über -93T/G gibt es in der Literatur widersprüchliche Aussagen, sowohl eine erhöhte als auch eine erniedrigte Promotor-Aktivität sind beschrieben. In unserem Kollektiv konnten wir diesen SNP 8 mal nachweisen, 6x bei Patienten mit Triglyzeriden > 150 mg/dl, 2 mal bei Patienten mit Triglyzeriden < 150 mg/dl. Tendenziell haben unsere Patienten mit -93G-Allel erhöhte Triglyzeride, so wie es auch in einigen Studien beschrieben wurde, das erhöhte KHK-Risiko sowie das erniedrigte HDL-Cholesterin konnten wir bei unseren Patienten nicht nachweisen, genauso wenig wie eine Prädisposition für einen höheren BMI. Obwohl in den letzten Jahren intensiv über die Bedeutung des Apolipoprotein E und der Lipoproteinlipase für den Triglyzerid-Stoffwechsel und das KHK-Risiko geforscht wurde, bleiben immer noch viele Fragen offen, die es in weiteren Studien und Funktionsuntersuchungen zu klären gilt.

Bibliographie / References

  1. Merkel, M., Eckel, R. H., Goldberg, I. J. (2002a) Lipoprotein lipase: genetics, lipid uptake, and regulation. J.Lipid Res. 43, 1997-2006
  2. Hall, S., Talmud, P. J., Cook, D. G., Wicks, P. D., Rothwell, M. J., Strazzullo, P., Sagnella, G. A., Cappuccio, F. P. (2000) Frequency and allelic association of common variants in the lipoprotein lipase gene in different ethnic groups: the Wandsworth Heart and Stroke Study. Genet.Epidemiol. 18, 203-216
  3. Hall, S., Chu, G., Miller, G., Cruickshank, K., Cooper, J. A., Humphries, S. E., Tal- mud, P. J. (1997) A common mutation in the lipoprotein lipase gene promoter, - 93T/G, is associated with lower plasma triglyceride levels and increased promo- ter activity in vitro. Arterioscler.Thromb.Vasc.Biol. 17, 1969-1976
  4. Schaefer, J. R., Simon, B., Soufi, M., Sattler, A., Noll, B., Herzum, M., Maisch, B. (2000) Strategies to optimize CAD prevention in modern cardiology. The "Mar- burg CAD Prevention Project". Herz 25, 113-116
  5. Hense, H. W., Schulte, H., Lowel, H., Assmann, G., Keil, U. (2003) Framingham risk function overestimates risk of coronary heart disease in men and women from Germany--results from the MONICA Augsburg and the PROCAM cohorts. Eur.Heart J. 24, 937-945
  6. Shih, S. J., Allan, C., Grehan, S., Tse, E., Moran, C., Taylor, J. M. (2000) Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J.Biol.Chem. 275, 31567-31572
  7. Myers, R. M., Fischer, S. G., Lerman, L. S., Maniatis, T. (1985) Nearly all single ba- se substitutions in DNA fragments joined to a GC-clamp can be detected by de- naturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3131-3145
  8. Grundy, S. M., Balady, G. J., Criqui, M. H., Fletcher, G., Greenland, P., Hiratzka, L. F., Houston-Miller, N., Kris-Etherton, P., Krumholz, H. M., LaRosa, J., Ockene, I. S., Pearson, T. A., Reed, J., Washington, R., Smith, S. C., Jr. (1998) Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. Ameri- can Heart Association. Circulation 97, 1876-1887
  9. Grundy, S. M., Bazzarre, T., Cleeman, J., D'Agostino, R. B., Sr., Hill, M., Houston- Miller, N., Kannel, W. B., Krauss, R., Krumholz, H. M., Lauer, R. M., Ockene, I. S., Pasternak, R. C., Pearson, T., Ridker, P. M., Wood, D. (2000) Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: medical office assessment: Writing Group I. Circulation 101, E3-E11
  10. Maeno, Y., Kashiwagi, A., Nishio, Y., Takahara, N., Kikkawa, R. (2000) IDL can sti- mulate atherogenic gene expression in cultured human vascular endothelial cells. Diabetes Res.Clin.Pract. 48, 127-138
  11. Schoonjans, K., Gelman, L., Haby, C., Briggs, M., Auwerx, J. (2000) Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. J.Mol.Biol. 304, 323-334
  12. Kirchgessner, T. G., Chuat, J. C., Heinzmann, C., Etienne, J., Guilhot, S., Svenson, K., Ameis, D., Pilon, C., d'Auriol, L., Andalibi, A., . (1989a) Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc.Natl.Acad.Sci.U.S.A 86, 9647-9651
  13. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol.Cell 2, 275-281
  14. Mailly, F., Tugrul, Y., Reymer, P. W., Bruin, T., Seed, M., Groenemeyer, B. F., Asp- lund Carlson, A., Vallance, D., Winder, A. F., Miller, G. J., et al (1995) A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arteriosc- ler.Thromb.Vasc.Biol. 15, 468-478
  15. Nagai, M., Yoshida, A., Sato, N. (1998) Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. Biochem.Mol.Biol.Int. 44, 157-163
  16. Simonet, W. S., Bucay, N., Lauer, S. J., Taylor, J. M. (1993) A far-downstream he- patocyte-specific control region directs expression of the linked human apoli- poprotein E and C-I genes in transgenic mice. J.Biol.Chem. 268, 8221-8229
  17. Mahley, R. W. (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622-630
  18. Mahley, R. W. und Rall, S. C., Jr. (2000) Apolipoprotein E: far more than a lipid transport protein. Annu.Rev.Genomics Hum.Genet. 1:507-37., 507-537
  19. Zechner, R., Moser, R., Newman, T. C., Fried, S. K., Breslow, J. L. (1991) Apoli- poprotein E gene expression in mouse 3T3-L1 adipocytes and human adipose tissue and its regulation by differentiation and lipid content. J.Biol.Chem. 266, 10583-10588
  20. Zilversmit, D. B. (1973) A proposal linking atherogenesis to the interaction of endo- thelial lipoprotein lipase with triglyceride-rich lipoproteins. Circ.Res. 33, 633-638
  21. Kugiyama, K., Doi, H., Motoyama, T., Soejima, H., Misumi, K., Kawano, H., Naka- gawa, O., Yoshimura, M., Ogawa, H., Matsumura, T., Sugiyama, S., Nakano, T., Nakajima, K., Yasue, H. (1998) Association of remnant lipoprotein levels with im- pairment of endothelium-dependent vasomotor function in human coronary arte- ries. Circulation 97, 2519-2526
  22. Sheffield, V. C., Cox, D. R., Lerman, L. S., Myers, R. M. (1989) Attachment of a 40- base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc.Natl.Acad.Sci.U.S.A 86, 232-236
  23. Libby, P. (2000) Changing concepts of atherogenesis. J.Intern.Med. 247, 349-358
  24. Kawasaki, S., Taniguchi, T., Fujioka, Y., Takahashi, A., Takahashi, T., Domoto, K., Taguchi, M., Ishikawa, Y., Yokoyama, M. (2000) Chylomicron remnant induces apoptosis in vascular endothelial cells. Ann.N.Y.Acad.Sci. 902, 336-341
  25. Okumura, T., Fujioka, Y., Morimoto, S., Masai, M., Sakoda, T., Tsujino, T., Kashi- wamura, S., Okamura, H., Ohyanagi, M. (2006) Chylomicron remnants stimulate release of interleukin-1beta by THP-1 cells. J.Atheroscler.Thromb. 13, 38-45
  26. Kamemura, K., Fujioka, Y., Takaishi, H., Takahashi, A., Taniguchi, T., Ishikawa, Y., Yokoyama, M. (2006) Chylomicron remnants upregulate CD40 expression via the ERK pathway and a redox-sensitive mechanism in THP-1 cells. Atherosclerosis 187, 257-264
  27. Rios, D. L., Vargas, A. F., Ewald, G. M., Torres, M. R., Zago, A. J., Callegari- Jacques, S. M., Hutz, M. H. (2003) Common variants in the lipoprotein lipase ge- ne in Brazil: association with lipids and angiographically assessed coronary athe- rosclerosis. Clin.Chem.Lab Med. 41, 1351-1356
  28. Myers, R. M., Maniatis, T., Lerman, L. S. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155, 501-527
  29. Murdoch, S. J. und Breckenridge, W. C. (1996) Effect of lipid transfer proteins on lipoprotein lipase induced transformation of VLDL and HDL. Bio- chim.Biophys.Acta 1303, 222-232
  30. Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A., Lanas, F., McQueen, M., Budaj, A., Pais, P., Varigos, J., Lisheng, L. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the IN- TERHEART study): case-control study. Lancet 364, 937-952
  31. Klouche, M., Rose-John, S., Schmiedt, W., Bhakdi, S. (2000) Enzymatically degra- ded, nonoxidized LDL induces human vascular smooth muscle cell activation, fo- am cell transformation, and proliferation. Circulation 101, 1799-1805
  32. Hokanson, J. E. (1999) Functional variants in the lipoprotein lipase gene and risk cardiovascular disease. Curr.Opin.Lipidol. 10, 393-399
  33. Weisgraber, K. H., Rall, S. C., Jr., Mahley, R. W. (1981) Human E apoprotein hete- rogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo- E isoforms. J.Biol.Chem. 256, 9077-9083
  34. Sparkes, R. S., Zollman, S., Klisak, I., Kirchgessner, T. G., Komaromy, M. C., Mo- handas, T., Schotz, M. C., Lusis, A. J. (1987) Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1, 138-144
  35. Wion, K. L., Kirchgessner, T. G., Lusis, A. J., Schotz, M. C., Lawn, R. M. (1987) Human lipoprotein lipase complementary DNA sequence. Science 235, 1638- 1641
  36. Merkel, M., Heeren, J., Dudeck, W., Rinninger, F., Radner, H., Breslow, J. L., Gold- berg, I. J., Zechner, R., Greten, H. (2002b) Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J.Biol.Chem. 277, 7405-7411
  37. Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868-874
  38. Libby, P., Ridker, P. M., Hansson, G. K. (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J.Am.Coll.Cardiol. 54, 2129-2138
  39. Murdoch, S. J. und Breckenridge, W. C. (1995) Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL. Atherosclerosis 118, 193-212
  40. Nakshatri, H., Nakshatri, P., Currie, R. A. (1995) Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J.Biol.Chem. 270, 19613-19623
  41. Kastelein, J. J., Jukema, J. W., Zwinderman, A. H., Clee, S., van Boven, A. J., Jan- sen, H., Rabelink, T. J., Peters, R. J., Lie, K. I., Liu, G., Bruschke, A. V., Hayden, M. R. (2000) Lipoprotein lipase activity is associated with severity of angina pec- toris. REGRESS Study Group. Circulation 102, 1629-1633
  42. M., Strickland, D. K., Chappell, D. A. (1996) Lipoprotein lipase binds to low densi- ty lipoprotein receptors and induces receptor-mediated catabolism of very low density lipoproteins in vitro. J.Biol.Chem. 271, 17073-17080
  43. Preiss-Landl, K., Zimmermann, R., Hammerle, G., Zechner, R. (2002) Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr.Opin.Lipidol. 13, 471-481
  44. Hessler, J. R., Morel, D. W., Lewis, L. J., Chisolm, G. M. (1983) Lipoprotein oxidati- on and lipoprotein-induced cytotoxicity. Arteriosclerosis 3, 215-222
  45. Tacken, P. J., Hofker, M. H., Havekes, L. M., Van Dijk, K. W. (2001) Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr.Opin.Lipidol. 12, 275-279
  46. Scott, J., Knott, T. J., Shaw, D. J., Brook, J. D. (1985) Localization of genes enco- ding apolipoproteins CI, CII, and E to the p13----cen region of human chromoso- me 19. Hum.Genet. 71, 144-146
  47. M. (1993) Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipopro- tein lipase. J.Biol.Chem. 268, 9369-9375
  48. Talmud, P. J., Hall, S., Holleran, S., Ramakrishnan, R., Ginsberg, H. N., Humphries, S. E. (1998) LPL promoter -93T/G transition influences fasting and postprandial plasma triglycerides response in African-Americans and Hispanics. J.Lipid Res. 39, 1189-1196
  49. Libby, P. (2009) Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J.Lipid Res. 50 Suppl, S352-S357
  50. Simonet, W. S., Bucay, N., Pitas, R. E., Lauer, S. J., Taylor, J. M. (1991) Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice. J.Biol.Chem. 266, 8651-8654
  51. Haley, K. J., Lilly, C. M., Yang, J. H., Feng, Y., Kennedy, S. P., Turi, T. G., Thomp- son, J. F., Sukhova, G. H., Libby, P., Lee, R. T. (2000) Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 102, 2185-2189
  52. Mahley, R. W., Huang, Y., Rall, S. C., Jr. (1999) Pathogenesis of type III hyperli- poproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes.
  53. Sun, Y., Hegamyer, G., Colburn, N. H. (1993) PCR-direct sequencing of a GC-rich region by inclusion of 10% DMSO: application to mouse c-jun. Biotechniques 15, 372-374
  54. Utermann, G., Hees, M., Steinmetz, A. (1977) Polymorphism of apolipoprotein E and occurence of dysbetalipoproteinaemia in man. Nature 269, 604-607
  55. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491
  56. Goudriaan, J. R., Tacken, P. J., Dahlmans, V. E., Gijbels, M. J., Van Dijk, K. W., Havekes, L. M., Jong, M. C. (2001) Protection from obesity in mice lacking the VLDL receptor. Arterioscler.Thromb.Vasc.Biol. 21, 1488-1493
  57. Schaefer, J. R. (1998) Präventive Kardiologie. Prophylaxe der koronaren Herz- krankheit. (Schattauer Verlag, Stuttgart --New York)
  58. Yang, W. S., Nevin, D. N., Iwasaki, L., Peng, R., Brown, B. G., Brunzell, J. D., Deeb, S. S. (1996) Regulatory mutations in the human lipoprotein lipase gene in pati- ents with familial combined hyperlipidemia and coronary artery disease. J.Lipid Res. 37, 2627-2637
  59. Kawakami, A., Tanaka, A., Chiba, T., Nakajima, K., Shimokado, K., Yoshida, M. (2003) Remnant lipoprotein-induced smooth muscle cell proliferation involves e- pidermal growth factor receptor transactivation. Circulation 108, 2679-2688
  60. Menotti, A., Scanga, M., Morisi, G. (1994) Serum triglycerides in the prediction of coronary artery disease (an Italian experience). Am.J.Cardiol. 73, 29-32
  61. Sagoo, G. S., Tatt, I., Salanti, G., Butterworth, A. S., Sarwar, N., van Maarle, M., Jukema, J. W., Wiman, B., Kastelein, J. J., Bennet, A. M., De Faire, U., Danesh, J., Higgins, J. P. (2008) Seven lipoprotein lipase gene polymorphisms, lipid frac- tions, and coronary disease: a HuGE association review and meta-analysis.
  62. Yang, W. S. und Deeb, S. S. (1998) Sp1 and Sp3 transactivate the human lipopro- tein lipase gene promoter through binding to a CT element: synergy with the ste- rol regulatory element binding protein and reduced transactivation of a naturally occurring promoter variant. J.Lipid Res. 39, 2054-2064
  63. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H. (1986) Specific en- zymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb.Symp.Quant.Biol. 51 Pt 1, 263-273
  64. Mullis, K. B. und Faloona, F. A. (1987) Specific synthesis of DNA in vitro via a poly- merase-catalyzed chain reaction. Methods Enzymol. 155, 335-350
  65. Krieger, M. und Herz, J. (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu.Rev.Biochem. 63, 601-637
  66. Osborne, J. C., Jr., Bengtsson-Olivecrona, G., Lee, N. S., Olivecrona, T. (1985) Studies on inactivation of lipoprotein lipase: role of the dimer to monomer disso- ciation. Biochemistry 24, 5606-5611
  67. W., Gagne, S. E., Jansen, H., Seidell, J. C., Kromhout, D., Jukema, J. W., Bruschke, A. V., Boerwinkle, E., Hayden, M. R. (1998) The Asn9 variant of li- poprotein lipase is associated with the -93G promoter mutation and an increased risk of coronary artery disease. The Regress Study Group. Clin.Genet. 53, 27-33
  68. Williams, S. E., Inoue, I., Tran, H., Fry, G. L., Pladet, M. W., Iverius, P. H., Lalouel, J. M., Chappell, D. A., Strickland, D. K. (1994) The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related prote- in/alpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP. J.Biol.Chem. 269, 8653-8658
  69. Ross, R. (1986) The pathogenesis of atherosclerosis--an update. N.Engl.J.Med. 314, 488-500
  70. Takahashi, S., Sakai, J., Fujino, T., Hattori, H., Zenimaru, Y., Suzuki, J., Miyamori, I., Yamamoto, T. T. (2004) The very low-density lipoprotein (VLDL) receptor: cha- racterization and functions as a peripheral lipoprotein receptor.
  71. World Health Organization (2004) The World Health report 2004 annex Table 2. Deaths by cause, sex and mortality stratum in WHO regions, estimates for 2003. Geneva: World Health Organization Yamamoto, T., Takahashi, S., Sakai, J., Kawarabayasi, Y. (1993) The very low den- sity lipoprotein receptor: A second lipoprotein receptor that may mediate uptake of fatty acids into muscle and fat cells. Trends Cardiovasc.Med. 3, 144-148
  72. Zannis, V. I., Kan, H. Y., Kritis, A., Zanni, E., Kardassis, D. (2001) Transcriptional regulation of the human apolipoprotein genes. Front Biosci. 6, D456-D504
  73. Jeppesen, J., Hein, H. O., Suadicani, P., Gyntelberg, F. (1998) Triglyceride con- centration and ischemic heart disease: an eight-year follow-up in the Copenha- gen Male Study. Circulation 97, 1029-1036
  74. Rapp, J. H., Lespine, A., Hamilton, R. L., Colyvas, N., Chaumeton, A. H., Tweedie Hardman, J., Kotite, L., Kunitake, S. T., Havel, R. J., Kane, J. P. (1994) Triglyce- ride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immuno- sorption from human atherosclerotic plaque. Arterioscler.Thromb. 14, 1767-1774
  75. Hufnagel, B., Dworak, M., Soufi, M., Mester, Z., Zhu, Y., Schaefer, J. R., Klumpp, S., Krieglstein, J. (2005) Unsaturated fatty acids isolated from human lipoproteins ac- tivate protein phosphatase type 2Cbeta and induce apoptosis in endothelial cells. Atherosclerosis 180, 245-254
  76. Niemeier, A., Gafvels, M., Heeren, J., Meyer, N., Angelin, B., Beisiegel, U. (1996) VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J.Lipid Res. 37, 1733-1742
  77. Kostner, G. M., Scharnagl, H., Kostner K., Maerz, W. (2006). Zusammensetzung und Stoffwechsel der Lipoproteine In Handbuch der Fettstoffwechselstörungen von Schwandt, P., (Schattauer Verlag, pp. 2:65
  78. Radha, V., Vimaleswaran, K. S., Ayyappa, K. A., Mohan, V. (2007) Association of lipoprotein lipase gene polymorphisms with obesity and type 2 diabetes in an A- sian Indian population. Int.J.Obes.(Lond) 31, 913-918
  79. Kirchgessner, T. G., LeBoeuf, R. C., Langner, C. A., Zollman, S., Chang, C. H., Tay- lor, B. A., Schotz, M. C., Gordon, J. I., Lusis, A. J. (1989b) Genetic and develop- mental regulation of the lipoprotein lipase gene: loci both distal and proximal to the lipoprotein lipase structural gene control enzyme expression. J.Biol.Chem. 264, 1473-1482
  80. Yang, W. S., Nevin, D. N., Peng, R., Brunzell, J. D., Deeb, S. S. (1995) A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial com- bined hyperlipidemia and low LPL activity. Proc.Natl.Acad.Sci.U.S.A. 92, 4462- 4466
  81. Laffitte, B. A., Repa, J. J., Joseph, S. B., Wilpitz, D. C., Kast, H. R., Mangelsdorf, D. J., Tontonoz, P. (2001) LXRs control lipid-inducible expression of the apolipopro- tein E gene in macrophages and adipocytes. Proc.Natl.Acad.Sci.U.S.A 98, 507- 512
  82. Henke, W., Herdel, K., Jung, K., Schnorr, D., Loening, S. A. (1997) Betaine impro- ves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 25, 3957-3958
  83. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropo- metric measures in Hispanics of Caribbean origin. Obesity.(Silver.Spring) 18, 327-332
  84. Kannel, W. B. und Vasan, R. S. (2009) Triglycerides as vascular risk factors: new epidemiologic insights. Curr.Opin.Cardiol. 24, 345-350
  85. Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., Steinberg, D. (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
  86. Mach, F., Sauty, A., Iarossi, A. S., Sukhova, G. K., Neote, K., Libby, P., Luster, A. D. (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J.Clin.Invest 104, 1041-1050
  87. Saxena, U., Klein, M. G., Vanni, T. M., Goldberg, I. J. (1992) Lipoprotein lipase inc- reases low density lipoprotein retention by subendothelial cell matrix. J.Clin.Invest 89, 373-380
  88. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., Auwerx, J. (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipopro- tein lipase gene. EMBO J. 15, 5336-5348
  89. Takahashi, S., Kawarabayasi, Y., Nakai, T., Sakai, J., Yamamoto, T. (1992) Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like prote- in with distinct ligand specificity. Proc.Natl.Acad.Sci.U.S.A. 89, 9252-9256
  90. Yla-Herttuala, S., Lipton, B. A., Rosenfeld, M. E., Goldberg, I. J., Steinberg, D., Witz- tum, J. L. (1991) Macrophages and smooth muscle cells express lipoprotein lipa- se in human and rabbit atherosclerotic lesions. Proc.Natl.Acad.Sci.U.S.A 88, 10143-10147
  91. World Health Organization (1958) Classification of atherosclerotic lesions; report of a study group. World Health Organ Tech.Rep.Ser. 57, 1-20
  92. Wittrup, H. H., Andersen, R. V., Tybjaerg-Hansen, A., Jensen, G. B., Nordestgaard, B. G. (2006) Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease: cross- sectional, prospective, and case-control studies from the Copenhagen City Heart Study. J.Clin.Endocrinol.Metab 91, 1438-1445


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten