Publikationsserver der Universitätsbibliothek Marburg

Titel:Gene expression in Phycomyces blakesleeanus after light and gravity stimulation
Autor:Seger, Norman-Ditmar
Weitere Beteiligte: Galland, Paul (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0659
DOI: https://doi.org/10.17192/z2011.0659
URN: urn:nbn:de:hebis:04-z2011-06596
DDC:570 Biowissenschaften, Biologie
Titel(trans.):Gene expression in Phycomyces blakesleeanus after light and gravity stimulation
Publikationsdatum:2011-12-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
fungi, gene expression, light, Genexpression

Zusammenfassung:
Licht zählt zu den wichtigsten abiotischen Faktoren. Es steuert eine Vielzahl von Schlüsselprozessen der pilzlichen Biologie und des Lebenszyklus. Der filamentöse Pilz Phycomyces blakesleeanus ist seit mehr als 50 Jahren ein Modellorganismus der sensorischen Physiologie. Eine lineare Signaltransduktionskette vom Lichtrezeptor zu den Effektoren wurde bisher postuliert. Durch die Isolierung und Charakterisierung von Verhaltensmutanten (mad), aber besonders durch die Identifizierung der Gruppe der wc-Fotorezeptorgenen (madA, madB) konnten große Fortschritte in der molekularen Photophysiologie erzielt werden. Das Pendant der White Collar-1/-2 Fotorezeptoren/Transkriptionsfaktoren in N. crassa sind in P. blakesleeanus die MADA- und MADB-Proteine, welche einen photosensitiven Transkriptionsfaktor-Komplex (MAD-Komplex) bilden, um multiple lichtkontrollierte Prozesse der pilzlichen Genese zu steuern (Sanz et al., 2009). In dieser Arbeit wurden, aus fünf differenten funktionellen Proteingruppen wie den WC-Typ Fotorezeptoren, Hitzeschock-Proteinen, RNA-/Chromatik-Modulierenden Enzymen, Zytoskelettkomponenten und Enzyme der ß-Karotinbiosynthese, 25 Gene verwendet, um die Rolle der WC-Typ Fotorezeptoren in der fotoregulierten Genexpression näher zu untersuchen. Dazu wurde ein Protokoll entwickelt, in dem eine nicht saturierte transkriptionelle Änderung nach einem Puls von aktinischem Licht, mittels der qRT-PCR-Methode gemessen, determiniert wurde. Dabei stand nicht nur die blaulichtabhängige Transkriptionsänderung des Wildtyps und der mad-Mutanten im Vordergrund, sondern vor allem die Erforschung der Genexpression nach Rotlicht- und gravitropischer Stimulation. Die Genexpression von in Dunkelheit gewachsenen Myzelien des Wildtyps von P. blakesleeanus wurde über einen Zeitraum von 11,5 Stunden gemessen. Sie zeigt differente transkriptionelle Niveaus der Gene. Diese korrelieren nicht mit ihren funktionellen Gruppen, was eine spezifische Genregulation postulieren lässt. In den mad-Mutanten ist die Transkription von mehr als der Hälfte der Gene verschieden von derjenigen des Wildtyps, was die Hypothese einer genspezifischen Regulation und die Wichtigkeit des photosensitiven Transkriptionskomplexes MAD untermauert. Im Gegensatz zu N. crassa konnte keine endogene Genexpressionsrhythmik nachgewiesen werden. Im Wildtypstamm von P. blakesleeanus ist nach einem Blaulichtpuls oder konstanterer Blaulichtbestrahlung die Transkription der meisten Gene (60 %) verändert. Dabei wurden hauptsächlich Expressionsaktivierungen, aber auch Inhibitionen festgestellt. Konstante Blaulichtbestrahlung führt bei 11 Genen zu einer moderaten, (3 bis 20-fachen), und bei 15 Genen zu einer starken (20 bis 80-fachen) transkriptionellen Induktion im Wildtyp. Diese unterschiedlichen Expressions- aktivierungen korrelieren nicht mit den funktionellen Gengruppen, was eine individuelle Genregulation vermuten lässt. Dabei gilt als empirische Regel, dass die Gene, mit dem geringsten Expressionsniveau in Dunkelheit, nach Blaulicht den höchsten Anstieg ihrer mRNA zeigen. In keinem der einfachen mad-Mutanten konnte nach einem Blaulichtpuls eine komplette Expressionsinhibition gemessen werden, vielmehr wurden stark vom Wildtyp abweichende Transkriptionsniveaus festgestellt. Nur in den Doppel-madAB- und Triple-madABC-Mutanten blieb eine Photo- aktivierung aus. Dies demonstriert die dominante Rolle des MAD-Komplexes einerseits und lässt einen komplexeren Regulationsmechanismus andererseits vermuten. Zusätzlich zu den transkriptionellen Blaulichteffekten wurde die Genexpression nach Rotlichtbestrahlung erforscht. Rotlicht moduliert die Transkription sowohl positiv als auch negativ. Einige Gene zeigen photoreversible Expressionsänderungen nach einem Rotlichtpuls oder nach konstanterer Rotlicht- bestrahlung. Die zeitabhängigen transkriptionellen Rotlichteffekte sind im Wildtyp abweichend von denen nach Blaulichtbestrahlung, wobei einige sogar gegenteilige Änderungen zeigen. Mutationen an den WC-Typ Fotorezeptorgenen führen nach Rotlichtbestrahlung bei einigen Genen zu einer stärkeren Inhibition der Genexpression als der entsprechenden Aktivierung nach Blaulicht im Wildtyp. Diese Ergebnisse verdeutlichen einmal mehr die Komplexität der Genregulation in P. blakesleeanus, welche die Beteiligung von mehr als nur den madAB Fotorezeptoren nahe legt. Die Expressionsänderungen nach bichromatischer Bestrahlung unterstreichen die Vermutung, dass weitere Fotorezeptoren in der transkriptionellen Regulation involviert sind. Gravitropische Stimulation führt bei einigen Genen im Wildtyp zu einer transienten Expressionsänderung, welche sich von der in den mad-Mutanten deutlich unterscheidet. Diese Ergebnisse unterstreichen die zentrale Rolle des MAD- Komplexes für die Genregulation nicht nur bei der Integration des Lichtsignals, sondern auch bei der des Schwerereizes, und deuten auf weitere regulatorische Elemente hin. Ein Genregulationskomplex-Modell mit genspezifischen regulatorischen Elementen und anderen Fotorezeptoren wird diskutiert.

Summary:
Light is one of the most powerful abiotic factors triggering a multitude of developmental key processes of fungal biology and lifecycle. The filamentous fungus Phycomyces blakesleeanus has been a model organism in sensory physiology since more than 50 years. Therefore a linear flow of light information from sensors to effectors was assumed. Since the isolation and characterization of behavioral mad mutant strains and even more since the recent identification of the set of wc-photoreceptor genes (madA, madB) molecular approaches of photophysiology were able to advance. The counterparts of N. crassa White Collar-1/-2 photoreceptors/transcription factors in P. blakesleeanus are the MADA and MADB proteins which form a photosensitive transcription factor complex (MAD complex) to govern many light-controlled processes in the fungus (Sanz et al., 2009). In this work 25 genes encoding mainly five different functional protein groups, the wc-type photoreceptors, heat shock proteins, RNA-/chromatin-modulating enzymes, the ß-carotene enzymes and constituents of the cytoskeleton were used to move a step further in light dependent gene expression to gain new insights about the regulatory role of the wc-type photoreceptor mutants madA and madB. Therefore, a protocol was developed that consisted of a pulse of actinic light, which gave a non saturating transcriptional response, measured by the method of qRT-PCR. Not only the characterization of the blue light responses in both wildtype and mad mutant strains came into the focus of these approaches, but also the search for red light and gravity responses on a transcriptional level. The gene expression in dark grown mycelia of the wildtype of P. blakesleeanus measured during an 11.5 hour time course shows different expression levels for each gene. The levels of expression are not correlated with a functional group of genes, indicating that the genes are individually regulated even in darkness. In the mad mutant strains the gene expression levels of more than half of the genes are different to the ones in the wildtype supporting this hypothesis and demonstrating the importance of the photosensitive transcription factor complex MAD. In contrast to the findings of N. crassa none of the genes show an endogenous rhythmicity of their expression. In the wildtype of P. blakesleeanus many of the analyzed genes (60 %) show a response after exposure to continuous or a pulse of blue light. These photoresponses are mainly a transcriptional activation but a suppression of gene expression was detected as well. Continuous light conditions can enhance the expression of 11 genes moderately, about three to 20-fold. After a pulse of it, the transcription of 15 genes is increased. The photoactivation after a pulse of blue light can be divided into a strong (20-80-fold) or moderate increase of mRNA in the wildtype which do not correlate with a functional group of genes, indicating that the genes are individually regulated. As an empirical rule, the increase of transcript after blue light exposure is higher, the lower the dark expression level is. Four genes show a moderate decrease of their transcript after both blue light treatments. After a pulse of blue light none of the single mad mutant strains show a complete suppression of the photoactivation but strongly diverse mRNA levels of the light induced genes compared to the wildtype. Only in the double madAB or triple madABC mutant strains an abolished photoactivation of transcription could be detected. It shows the dominant role of the MAD complex on the one hand and suggests a more complex regulatory mechanism on the other. In addition to the blue light effects the influence of red light on transcription was investigated. Red light moderately modulates the gene expression, both positively and negatively. Some genes show photoreversible expression patterns after a pulse and continuous blue and red light. The time dependent red light effects on transcriptional level are different to the ones of blue light and for some genes show reverse patterns in the wildtype. For some genes mutation of the wc-type photoreceptors results in a more pronounced suppression after red than activation after blue light in the wildtype or increased transcription in the mutant strains while unaffected in the wildtype after a pulse of red light. The results demonstrate the complex regulatory mechanisms of gene expression in P. blakesleeanus suggesting the interaction of more than only the madAB photoreceptors. The expression patterns after bichromatic light treatments support the notation of other than wc-type photoreceptors being involved in transcriptional regulation. Gravity stimulation, for some genes, results in specific or transient expression changes in the wildtype, dramatically different to the ones in the madC and madABC triple mutant strains. These results underlie the central role of the madAB photoreceptors/transcription factors not only by integrating the light, but also the gravity signal as well and suggest the interaction of more than only the madAB photoreceptors in a gene regulation complex. A model of the gene regulation in P. blakesleeanus is presented with a set of proposal, as other photoreceptors and gene specific regulating elements.

Bibliographie / References

  1. Sutter, R. P. (1975). Mutation affecting sexual development in Phycomyces blakesleeanus. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 127-130.
  2. Cerdá-Olmedo, E. (2001). Phycomyces and the biology of light and color. FEMS Microbiology Reviews, 25(5), 503-512.
  3. Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23(20), 4051-4060.
  4. E., et al. (2000). The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. The EMBO Journal, 19(16), 4383-4392.
  5. Purschwitz, J., Müller, S., & Fischer, R. (2009). Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Molecular Genetics and Genomics, 281(1), 35-42.
  6. Interallelic complementation provides genetic evidence for the multimeric organization of the Phycomyces blakesleeanus phytoene dehydrogenase. European Journal of Biochemistry, 269(3), 902-908.
  7. Kottke T, Hegemann P, Dick B, Heberle J. (2006). The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers.;82(4):373-8. Review.
  8. Voigt, K. & Wöstemeyer, J. (2001). Phylogeny and origin of 82 zygomycetes from all 54 genera of the mucorales and mortierellales based on combined analysis of actin and translation elongation factor EF-1[alpha] genes. Gene, 270(1-2), 113-120.
  9. Arrach, N., Fernández-Martín, R., Cerdá-Olmedo, E., & Avalos, J. (2001). A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1687-1692.
  10. Kottke, T., Dick, B., Fedorov, R., Schlichting, I., Deutzmann, R., & Hegemann, P. (2003). Irreversible photoreduction of flavin in a mutated phot-LOV1 domain. Biochemistry, 42(33), 9854-9862.
  11. Bouly JP, Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van Der Straeten, D., Bakrim, N., Meier, S., Batschauer, A., Galland, P., Bittl, R., Ahmad, M. (2007). Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem., 282:9383–9391.
  12. Crevel, G., Bates, H., Huikeshoven, H., & Cotterill, S. (2001). The drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase {alpha}. J Cell Sci, 114(11), 2015-2025.
  13. Olmedo, M., Ruger-Herreros, C., Luque, E. M., & Corrochano, L. M. (2010). A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet. Biol., 47(4), 352-363.
  14. Galland, P. (1983). Action spectra of photogeotropic equilibrium in Phycomyces wild type and three behavioral mutants. Photochemistry and Photobiology, 37(2), 221-228.
  15. Orejas, M., Peláez, M. I., Alvarez, M. I., & Eslava, A. P. (1987). A genetic map of Phycomyces blakesleeanus. Molecular and General Genetics MGG, 210(1), 69-76.
  16. Galland, P., Amon, S., Senger, H., & Russo, V. E. A. (1995). Blue light reception in Phycomyces: Red light sensitization in madC mutants. Bot. Acta., 108, 344-350.
  17. Campuzano, V., Galland, P., Alvarez, M.I. and Eslava, A.P. (1996). Blue-Light receptor requirement for gravitropism, Autochemotropism and ethylene response in Phycomyces. Photochem. Photobiol. 63(5), 686-694
  18. Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., et al. (1991). Cloning of a factor required for activity of the ah-(dioxin) receptor. Science, 252(5008), 954-958.
  19. Butler, W. L., Norris, K. H., Siegelman, H. W., & Hendricks, S. B. (1959). Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proceedings of the National Academy of Sciences of the United States of America, 45(12), pp. 1703-1708.
  20. Miyazaki, Y., Sunagawa, M., Higashibata, A., Ishioka, N., Babasaki, K., & Yamazaki, T. (2010). Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus. FEMS Microbiology Letters, 307(1), 72-79.
  21. Elfving, F. (1881). En obeaktad kinslighet hos Phycomyces. Botaniska Notiser, 4, 105-107.
  22. Rudolph, H. (1958). Entwicklungsphysiologische Untersuchungen an den Sporangiophoren von phycomyees blakesleeanus. Biologisches Zentralblatt, 77, 385-437.
  23. Gutiérez-Corona, F., & Cerdá-Olmedo, E. (1985). Environmental influences in the development of Phycomyces sporangiophores. Exp. Mycol, 9, 56-63.
  24. Purschwitz, J., Müller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui A., Calvo, A. M., Fischer, R. (2008). Functional and physical interaction of blue-and red-light sensors in Aspergillus nidulans. Current Biology, 18(4), 255-259.
  25. Corrochano, L. M. (2007). Fungal photoreceptors: Sensory molecules for fungal development and behaviour. Photochemical & Photobiological Sciences, 6(7), 725-736.
  26. Almeida, E., & Cerdá-Olmedo, E. (2008). Gene expression in the regulation of carotene biosynthesis in Phycomyces. Current Genetics, 53(3), 129-137; 137.
  27. Froehlich, A. C., Chen, C., Belden, W. J., Madeti, C., Roenneberg, T., Merrow, M., et al. (2010). Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryotic Cell, 9(5), 738-750.
  28. Campuzano, B., Galland, P., Eslava, A.P. and Alvarez, M.I. (1995). Genetic characterization of two phototropism mutants of Phycomyces with defects in the genes madl and madJ. Curr. Genet. 27, 524-527
  29. Álvarez, M. I., Benito, E. P., Campuzano, V., & Eslava, A. P. (1993). Genetic loci of Phycomyces blakesleeanus. In S. J. O'Brien (Ed.), Genetic maps book 3: Lower eukarvotes-locus maps of complex genomes (6th ed., pp. 3.120-3.126). New York: Cold Spring Harbour Laboratory Press.
  30. Roncero, M. I. G., & Cerdá-Olmedo, E. (1982). Genetics of carotene biosynthesis in Phycomyces. Current Genetics, 5(1), 5-8.
  31. Torres-Martínez, S., Murillo, F. J., & Cerdá-Olmedo, E. (1980). Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genetics Research, 36(03), 299-309.
  32. Dunlap, J. C., & Loros, J. J. (2006). How fungi keep time: Circadian system in Neurospora and other fungi. Current Opinion in Microbiology, 9(6), 579-587.
  33. Schirmer, E. C., & Glover, J. R. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences -Regular Edition, 21(8), 289-296.
  34. Rutherford, S. L., & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396(6709), 336-342.
  35. Grandin, N., & Charbonneau, M. (2001). Hsp90 levels affect telomere length in yeast. Molecular Genetics and Genomics, 265(1), 126-134; 134.
  36. Idnurm, A., Walton, F. J., Floyd, A., & Heitman, J. (2008). Identification of the sex genes in an early diverged fungus. Nature, 451(7175), 193-196.
  37. Díaz-Mínguez, J. M., Iturriaga, E. A., Benito, E. P., Corrochano, L. M., & Eslava, A. P. (1990). Isolation and molecular analysis of the orotidine-5′-phosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Molecular and General Genetics MGG, 224(2), 269-278; 278.
  38. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320(5882), 1504-1506.
  39. Schmidt, W., & Galland, P. (1999). Light-induced absorbance changes in Phycomyces : Evidence for cryptochrome-associated flavosemiquinones. Planta, 208(2), 274-282; 282.
  40. Jayaram, M., Presti, D., & Delbrück, M. (1979). Light-induced carotene synthesis in Phycomyces. Experimental Mycology, 3(1), 42-52.
  41. Herrera-Estrella, A., & Horwitz, B. A. (2007). Looking through the eyes of fungi: Molecular genetics of photoreception. Molecular Microbiology, 64(1), 5-15.
  42. Eslava, A. P., Alvarez, M. I., & Delbrück, M. (1975). Meiosis in Phycomyces. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 4076-4080.
  43. Wolken, J. J. (1969). Microspectrophotometry and the photoreceptor of Phycomyces. The Journal of Cell Biology, 43(2), 354-360.
  44. Galland, P. and Lipson, E.D. (1985). Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH. Photochem. Photobiol. 41(3), 331-335.
  45. Álvarez, M., Ootaki, T., & Eslava, A. (1983). Mutants of Phycomyces with abnormal phototropism induced by ICR-170. Molecular and General Genetics MGG, 191(3), 507-511; 511.
  46. Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell, 120(5) 715-727.
  47. Bayram, Ö., Krappmann, S., Seiler, S., Vogt, N., & Braus, G. H. (2008). Neurospora crassa ve-1 affects asexual conidiation. Fungal Genetics and Biology, 45(2), 127-138.
  48. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry, 38(43), 14138-14145.
  49. Corrochano, L. M., & Garre, V. Photobiology in the zygomycota: Multiple photoreceptor genes for complex responses to light. Fungal Genetics and Biology (2010). Fungal Genet Biol., 47(11), 893-9. Epub 2010
  50. Photocarotenogenesis in Phycomyces : Expression of the carB gene encoding phytoene dehydrogenase. Journal of Plant Research, 114(1), 25-31.
  51. Corrochano, L. (2002). Photomorphogenesis in Phycomyces: Differential display of gene expression by PCR with arbitrary primers. Molecular Genetics and Genomics, 267(3), 424-428.
  52. Liu, Y., He, Q., & Cheng, P. (2003). Photoreception in Neurospora: A tale of two white collar proteins. Cell Mol. Life Sci., 60(10), 2131-2138.
  53. Maurizi, M. R., & Xia, D. (2004). Protein binding and disruption by Clp/Hsp100 chaperones. Structure, 12(2), 175-183.
  54. Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light. Fungal Genetics and Biology, 47(9), 773-781
  55. Galland, P. (1998). Reception of far-ultraviolet light in Phycomyces: Antagonistic interaction with blue and red light. Planta, 205(2), 269-276; 276.
  56. Carnoy, J. B. (1870). Recherches anatomiques et physiologiques sur les champignons. Bulletin De La Société Royale De Botanique De Belgique, 9, 157-321.
  57. Rodríguez-Romero, J., & Corrochano, L. M. (2006). Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: Proteins required for photoinduction and mechanism for adaptation to light. Molecular Microbiology, 61(4), 1049-1059.
  58. Ballario, P., Talora, C., Galli, D., Linden, H., & Macino, G. (1998). Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Molecular Microbiology, 29(3), 719-729.
  59. Bayram, Ö., Braus, G. H., Fischer, R., & Rodriguez-Romero, J. (2010) Spotlight on aspergillus nidulans photosensory systems. Fungal Genetics and Biology, In Press, Corrected Proof
  60. Statoliths in Phycomyces: Characterization of octahedral protein crystals. Fungal Genetics and Biology, 29(3), 211-220.
  61. Csermely, P., Schnaider, T., Sőti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79(2), 129-168.
  62. Harris, S. F., Shiau, A. K., & Agard, D. A. (2004). The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure (London, England : 1993), 12(6), 1087-1097.
  63. Chen, B., Kayukawa, T., Monteiro, A., & Ishikawa, Y. (2005). The expression of the HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, delia antiqua. Insect Molecular Biology, 14(6), 697-702.
  64. Bieszke, J., Li, L., & Borkovich, K. (2007). The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Current Genetics, 52(3), 149-157.
  65. Rodríguez-Romero, J., & Corrochano, L. M. (2004). The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Current Genetics, 46(5), 295-303.
  66. Cerdá-Olmedo, E. (1975). The genetics of Phycomyces blakesleeanus. Genetics Research, 25(03), 285-296.
  67. Idnurm, A., Rodríguez-Romero, J., Corrochano, L. M., Sanz, C., Iturriaga, E. A., Eslava, A. P., et al. (2006). The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4546-4551.
  68. Ruiz-Hidalgo, M., Benito, E. P., Sandmann, G., & Eslava, A. P. (1997). The phytoene dehydrogenase gene of Phycomyces: Regulation of its expression by blue light and vitamin A. Molecular and General Genetics MGG, 253(6), 734-744.
  69. Fraser, P. D., & Bramley, P. M. (1994). The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochimica Et Biophysica Acta (BBA) -Lipids and Lipid Metabolism, 1212(1), 59-66.
  70. Calvo, A. M. (2008). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics and Biology, 45(7), 1053-1061.
  71. Galland, P., Wallacher, Y., Finger, H., Hannappel, M., Tröster, S., Bold, E., et al. (2002). Tropisms in Phycomyces: Sine law for gravitropism, exponential law for photogravitropic equilibrium Springer Berlin / Heidelberg.
  72. Sachs, J. (1882). Ueber Ausschliessung der geotropischen und heliotropischen Krümmungen während des Wachstums. In J. Sachs (Ed.), Arbeiten des Botanischen Instituts in Würzburg, volume 2, (pp. 209-225)
  73. Rudolph, H. (1960). Weitere Untersuchungen zur Wärmeaktivierung der Sporangiophoren von Phycomyces blakesleeanus. Planta, 54(5), 505-529.
  74. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H., & Liu, Y. (2002). White collar-1, a DNA binding transcription factor and a light sensor. Science, 297(5582), 840-843.
  75. Chen, B., Piel, W. H., Gui, L., Bruford, E., & Monteiro, A. (2005). The HSP90 family of genes in the human genome: Insights into their divergence and evolution. Genomics, 86(6), 627-637.
  76. Blakeslee, A. F. (1904). Sexual reproduction in the Mucorineae. Proceedings of the American Academy of Arts and Sciences, 40(4), 205-319.
  77. Silva, F., Torres-Martínez, S. & Garre, V. (2006). Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Molecular Microbiology, 61(4), 1023-1037.
  78. Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 7(1), 156.
  79. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1), 5-17.
  80. Demerec, M., Adelberg, E. A., Clark, A. J., & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics, 54(1), 61-76.
  81. Eslava, A. P., Alvarez, M. I., Burke, P. V., & Delbruck, M. (1975). Genetic recombination in sexual crosses of Phycomyces. Genetics, 80(3), 445-462.
  82. Froehlich, A. C., Noh, B., Vierstra, R. D., Loros, J., & Dunlap, J. C. (2005). Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryotic Cell, 4(12), 2140-2152.
  83. Rockwell, N. C., & Lagarias, J. C. (2006). The structure of phytochrome: A picture is worth a thousand spectra. Plant Cell, 18(1), 4-14.
  84. Denault, D. L., Loros, J. J., & Dunlap, J. C. (2001). WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. The EMBO Journal, 20(1), 109-117.
  85. The Neurospora crassa white collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Molecular Biology of the Cell, 17(10), 4576-4583.
  86. Moseyko, N., Zhu, T., Chang, H., Wang, X., & Feldman, L. J. (2002). Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiology, 130(2), 720-728.
  87. Nicolas, F. E., Torres-Martinez, S., & Ruiz-Vazquez, R. (2003). Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. The EMBO Journal, 22(15), 3983-3991.
  88. Bieszke, J. A., Braun, E. L., Bean, L. E., Kang, S., Natvig, D. O., & Borkovich, K. A. (1999). The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8034-8039.
  89. Sanz, C., RodrÃguez-Romero, J., Idnurm, A., Christie, J. M., Heitman, J., Corrochano, L. M., et al. (2009). Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Sciences, 106(17), 7095-7100.
  90. Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced silencing complex: A versatile gene-silencing machine. Journal of Biological Chemistry, 284(27), 17897-17901.
  91. Idnurm, A., Verma, S., & Corrochano, L. M. (2010). A glimpse into the basis of vision in the kingdom mycota. Fungal Genet. Biol., 47(11), 881-892.
  92. Holt, S. E., Aisner, D. L., Baur, J., Tesmer, V. M., Dy, M., Ouellette, M., et al. (1999). Functional requirement of p23 and Hsp90 in telomerase complexes. Genes & Development, 13(7), 817-826.
  93. Thornton, R. M. (1972). Alternative fruiting pathways in Phycomyces. Plant Physiology, 49(2), 194-197.
  94. Delbruck, M., & Shropshire, W., J. (1960). Action and transmission spectra of Phycomyces. Plant Physiology, 35(2), 194-204.
  95. Delbrück, M., Katzir, A., & Presti, D. (1976). Responses of Phycomyces indicating optical excitation of the lowest triplet state of riboflavin. Proceedings of the National Academy of Sciences of the United States of America, 73(6), 1969-1973.
  96. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J, 15(7), 1650-1657.
  97. Grolig, F., Eibel, P., Schimek, C., Schapat, T., Dennison, D. S., & Galland, P. A. (2000). Interaction between gravitropism and phototropism in sporangiophores of Phycomyces blakesleeanus. Plant Physiology, 123(2), 765-776.
  98. Brandt, S., von Stetten, D., Günther, M., Hildebrandt, P., & Frankenberg-Dinkel, N. (2008). The fungal phytochrome FphA from aspergillus nidulans. Journal of Biological Chemistry, 283(50), 34605-34614.
  99. Photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophysical Journal, 84(2), 1192-1201.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten