Publikationsserver der Universitätsbibliothek Marburg

Titel:Magneto-optische und magnetische Untersuchungen an MBE gewachsenen MnS- und MnCrS-Strukturen
Autor:Demper, Manuel
Weitere Beteiligte: Heimbrodt, Wolfram (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0653
DOI: https://doi.org/10.17192/z2011.0653
URN: urn:nbn:de:hebis:04-z2011-06538
DDC:530 Physik
Titel (trans.):Magneto-optical and magnetic investigations on MBE grown MnS and MnCrS structures
Publikationsdatum:2011-12-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
low dimensional semiconductor, MnS, zeitaufgelöste Photolumineszenzspektroskopie, magneto-optische Untersuchungen, Elektronenspinresonanzspektroskopie, SQUID, Niederdimensionaler Halbleiter, electron spin resonance spectroscopy, time resolved photoluminescence, magneto-optical investigations, Optische Spektroskopie, MnS, Antiferromagnetikum, Quanteninterferometer

Zusammenfassung:
Im Hinblick auf die stetige Miniaturisierung bestehender elektronischer Bauelemente ist irgendwann der Punkt erreicht, bei dem sich die bekannten fundamentalen Eigenschaften der verwendeten Materialien aus der makroskopischen Welt grundlegende ändern. Da diese insbesondere für ferro- und antiferromagnetische Materialien noch zu großen Teilen unverstanden sind, wird anhand verschiedenster Zinkblende-Schichtsystemen aus ZnSe/MnS/ZnSe, die mithilfe der Molekularstrahlepitaxie auf ein GaAs-Substrat abgeschieden sind, der Frage nach den Eigenschaften dieser niederdimensionalen Materialien nachgegangen. Dabei wird neben dem Einfluss der Dimension durch sukzessive Reduktion der Schichtdicke des antiferromagnetischen Materials MnS auch die Wirkung des Einbaus von Chrom auf die magnetischen Eigenschaften von MnS untersucht. Der dabei beschrittene experimentelle Weg, bei dem eine charakteristische Emission der für die magnetische Ordnung des Mangans verantwortlichen 3d-Elektronen zeitaufgelöst aber auch in Abhängigkeit der Temperatur und eines externen Magnetfeldes untersucht wird, erlaubt eine detaillierte Studie der magnetischen Eigenschaften des MnS bis zu realen zweidimensionalen Systemen. Die erlangten experimentellen Befunde offenbaren unter anderem ein magnetisches Phasendiagramm bei der dünnsten MnS-Schicht (1.8nm), das ein zweidimensionales Heisenberg-Spinsystem mit einer uniaxialen Anisotropie entlang der Wachstumsrichtung der Probe postuliert. Die Verwendung „herkömmlicher“ Messverfahren, wie die SQUID-Magnetometrie oder die Elektronenspinresonanz, die jedoch aufgrund der geringen Anzahl an magnetischen Momenten an ihre Auflösungsgrenze stoßen, dient zusätzlich zur Bestätigung dieser Ergebnisse. Die an den MnS entwickelten Messkonzepte, können auf entsprechende MnCrS-Schichtsysteme mit verschiedenen Chromanteilen angewendet werden und attestieren diesen Materialsystemen neben einer mit dem Chromgehalt zunehmenden magnetischen Phasenübergangstemperatur auch einen dominanter werdenden ferromagnetischen Charakter.

Bibliographie / References

  1. P. W. Anderson, Antiferromagnetism. Theory of superexchange interaction, Phys. Rev. 79 (1950) 350.
  2. A. Orendáčová, E. ˇ Cižmár, L. Sedláková, J. Hanko, M. KajKajˇKajňaková, M. Orendáč, A. Feher, J. S. Xia, L. Yin, D. M. Pajerowski, M. W. Meisel, V. Zelě nák, S. Zvya- gin, and J. Wosnitza, Interplay of frustration and magnetic field in the two-dimensional quantum antiferromagnet Cu(tn)Cl 2 , Phys. Rev. B 80 (2009) 144418. [5] E. ˇ Cižmár, S. A. Zvyagin, R. Beyer, M. Uhlarz, M. Ozerov, Y. Skourski, J. L. Manson, J. A. Schlueter, and J. Wosnitza, Magnetic properties of the quasi-two-dimensional S = 1
  3. J. Mašek, J. Kudrnovský, and F. Máca, Lattice constant in diluted magnetic semicon- ductors (Ga,Mn)As, Phys. Rev. B 67 (2003) 153203.
  4. A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi, Field-induced XY behavior in the S = 1 2 antiferromagnet on the square lattice, Phys. Rev. B 68 (2003) 060402.
  5. D. P. Landau and K. Binder, Phase diagrams and critical behavior of a two-dimensional anisotropic Heisenberg antiferromagnet, Phys. Rev. B 24 (1981) 1391.
  6. P. D. Desai, Thermodynamic properties of nickel, Int.l J. Thermophys. 8 (1987) 763.
  7. C. Kittel, Einführung in die Festkörperphysik, Oldenbourg Wiss.Verlag (2006).
  8. W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. f. Phys. A 49 (1928) 619.
  9. M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61 (1988) 2472.
  10. Y. Tanabe and S. Sugano, On the absorption spectra of complex ions, J. Phys. Soc. Japan 9 (1954) 753, 766.
  11. W. Buckel and R. Kleiner, Supraleitung : Grundlagen und Anwendungen, Weinheim: Wiley-VCH (2004).
  12. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer Berlin Heidel- berg New York (2005).
  13. N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in one-or two dimensional isotropic heisenberg models, Phys. Rev. Lett. 17 (1966) 1133.
  14. T. M. Giebultowicz, W. Faschinger, V. Nunez, P. Klosowski, G. Bauer, H. Sitter, and J. K. Furdyna, Antiferromagnetic spin ordering and interlayer magnetic correlation in MnTe/CdTe superlattices, J. Crystal Growth 138 (1994) 877.
  15. E. Condon, A Theory of Intensity Distribution in Band Systems, Phys. Rev. 28 (1926) 1182.
  16. B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B 37 (1988) 10244.
  17. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III/V com- pound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815.
  18. M. S. Seehra and R. D. Groves, Blue shifts of the optical transitions in MnO below T N , J. Phys. C: Solid State Phys. 16 (1983) L411.
  19. @BULLET Vortrag: Rackéve, Ungarn 2009:
  20. L. David, X. Tang, G. Beamson, D. Wolverson, K. A. Prior, and B. C. Cavenett, Characterization of heterostructures containing MnS grown by MBE, PSS (b) 241 (2004) 471.
  21. L. O´Dell and R. K. P. Zia, Classical and semiclassical diamagnetism: A critique of treatment in elementary texts, Amer. J. Phys. 54 (1986) 32.
  22. D. D. Sell, H. C. Casey, and K. W. Wecht, Concentration dependence of the refractive index for n-and p-type GaAs between 1.2 and 1.8eV, J. Appl. Phys. 45 (1974) 2650.
  23. P. D. Visschere and K. Neyts, Concentration quenchin and luminescent decay an AC thin-film ZnS:Mn electroluminescent devices, J. Lumi. 52 (1992) 313.
  24. I. T. Sorokina, Cr 2+ -doped II-VI materials for lasers and nonlinear optics, Opt. Mat. 26 (2004) 395 , third International Symposium on Lasers and Nonlinear Optical Materials (ISLNOM-3).
  25. G. Grebe, G. Roussos, and H. J. Schulz, Cr 2+ excitation levels in ZnSe and ZnS, J. Phys. C: Sol. Stat. Phys. 9 (1976) 4511.
  26. K. Binder and D. P. Landau, Critical properties of the two-dimensional anisotropic Hei- senberg model, Phys. Rev. B 13 (1976) 1140.
  27. N. A. Vlasenko, P. F. Oleksenko, Z. L. Denisova, M. O. Mukhlyo, and L. I. Veligura, Cr-related energy levels and mechanism of Cr 2+ ion photorecharge in ZnS:Cr, PSS (b) 245 (2008) 2550.
  28. L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65 (1944) 117.
  29. N. H. Long, M. Ogura, and H. Akai, Design of half-metallic ferrimagnets: Doped MnX (X = Te, Se, S), J. Appl. Phys. 106 (2009) 123905.
  30. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, Diel- ectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu), Phys. Rev. B 64 (2001) 104419.
  31. J. K. Furdyna, Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism, J. Appl. Phys. 53 (1982) 7637.
  32. J. K. Furdyna, Dilutet magnetic semiconductor, J. Appl. Phys. 64 (1988) R29.
  33. @BULLET M. Demper, L. Chen, C. Bradford, K. Prior, and W. Heimbrodt, Dimensional depen- dence of the energy transfer in MBE grown MnS layers, Solid State Comm. 150 (2010) 1092.
  34. D. H. Lee, J. D. Joannopoulos, J. W. Negele, and D. P. Landau, Discrete-symmetry breaking and novel critical phenomena in an antiferromagnetic planar (XY) model in two dimensions, Phys. Rev. Lett. 52 (1984) 433.
  35. M. Yokota and O. Tanimoto, Effects of Diffusion on Energy Transfer by Resonance, J. Phys. Soc. Jpn. 22 (1967) 779.
  36. H. Schläfer and G. Gliemann, Einführung in die Ligandefeldtheorie, Akademische Verlagsgesellschaft Geest und Portig K.-G. (1967).
  37. Seminare im Rahmen des EGCs: Electron-Electron Interactions in Solids @BULLET Poster: Riezlern, Österreich 2008: M. Demper, L. Chen, F.J. Brieler, C. Bradford, P. J. Klar, H.-A. Krug von Nidda, K. A. Prior, M. Fröba, A. Loidl, and W. Heimbrodt, Optical and magnetic properties of MnS in low dimensions.
  38. D. S. McClure, Electronic Spectra of Molecules and Ions in Crystals Part I. Molecular Crystals, Sol. Stat. Phys. 8 (1959) 1.
  39. T. Kurz, Elektronenspinresonanz in Nanoskaligen Systemen, Dissertation, Universität Augsburg (2005).
  40. J. Franck, Elementary processes of photochmical reactions, Trans. Faraday Soc. 21 (1926) 536.
  41. Energierelaxiation der Mangan 3d-Zustände in Molekularfeldnäherung . . 73
  42. O. Goede and D. D. Thong, Energy transfer processes in (Zn,Mn)S mixed crxstals, PSS (b) 124 (1984) 343.
  43. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39 (1989) 4828.
  44. L. Jansen, R. Ritter, and E. Lombardi, Exchange perturbation treatment of magnetic ordering in the three solid modifications of manganous sulfide, Physica 71 (1974) 425 .
  45. B. Morosin, Exchange Striction Effects in MnO and MnS, Phys. Rev. B 1 (1970) 236.
  46. T. Förster, Experimentelle und theoretische Untersuchung des zwischenmolekularen Über- gangs von Elektronenanregungsenergie, Z. f. Naturforschung 4a (1949) 321.
  47. M. Farle, Ferromagnetic resonance of ultrathin metallic layers, Rep. Prog. Phys. 61 (1998) 755.
  48. L. de Jongh, H. Brom, H. de Groot, T. Hijmans, and W. Korving, Field-induced transitions in low-dimensional antiferromagnets and in a spin-peierls system, MMM 54- 57 (1986) 1447 .
  49. F. J. Brieler, P. Grundmann, M. Fröba, L. Chen, P. J. Klar, W. Heimbrodt, H.-A. K. von Nidda, T. Kurz, and A. Loidl, Formation of Zn 1−x Mn x S Nanowires within Meso- porous Silica of Different Pore Sizes, J. Am. Chem. Soc. 126 (2004) 797.
  50. M. Cardona, Fundamental Reflectivity Spectrum of Semiconductors with Zinc-Blende Structure, J. Appl. Phys. 32 (1961) 2151.
  51. J. Sólyom, Fundamentals of the physics of solids ,Volume 1, Springer-Verlag Berlin Heidelberg New York (2002).
  52. B. J. Skromme, Y. Zhang, D. J. Smith, and S. Sivananthan, Growth and characteri- zation of pseudomorphic single crystal zinc blende MnS, Appl. Phys. Lett. 67 (1995) 2690.
  53. K. A. Prior, C. Bradford, L. David, X. Tang, and B. C. Cavenett, Growth by MBE and characterization of metastable group II sulphides, PSS (b) 241 (2004) 463.
  54. C. Bradford, C. B. O'Donnell, B. Urbaszek, A. Balocchi, C. Morhain, and K. A. Prior, Growth of zinc blende MgS/ZnSe single quatum wells by molecular-beam epitaxy using ZnS as a sulphur source, Appl. Phys. Lett. 76 (2000) 3929.
  55. L. David, C. Bradford, X. Tang, T. Graham, K. A. Prior, and B. C. Cavenett, Growth of zinc blende MnS and MnS heterostructures by MBE using ZnS as a sulfur source, J. Crystal Growth 251 (2003) 591.
  56. K. Yao, G. Gao, Z. Liu, and L. Zhu, Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study, Sol. Stat. Comm 133 (2005) 301.
  57. Mukhin, and A. M. Balbashov, High-field ESR spectroscopy of the spin dynamics in La1 − xSrxMnO3 (x< .175), Phys. Rev. B 65 (2002) 214422.
  58. M. U. Lehr, B. Litzenburger, J. Kreissl, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Kli- makow, and L. Worschech, Identification of near-infrared Cr 2+ luminescence in ZnSe, J. Phys: Cond. Mat. 9 (1997) 753.
  59. M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96 (1954) 99.
  60. K. B. Eisenthal and S. Siegel, Influence of Resonance Transfer on Luminescence Decay , J. Chem. Phys. 41 (1964) 652.
  61. L. Wang, S. Sivananthan, R. Sporken, and R. Caudano, Interface properties and valence-band discontinuity of MnS/ZnSe heterostructures, Phys. Rev. B 54 (1996) 2718.
  62. G. Grebe and H.-J. Schulz, Interpretation of Excitation Spectra of ZnS:Cr2+ by Fitting the Eigenvalues of the Tanabe-Sugano Matrices, physica status solidi (b) 54 (1972) K69.
  63. H. A. Kramers, L'interaction Entre les Atomes Magnétogènes dans un Cristal Parama- gnétique, Physica 1 (1934) 182 .
  64. Spektren der bei der Anregungsspektroskopie verwendeten Lichtquellen . i B.1. Kristallfeldaufspaltung in tetraedrischer sowie oktaedrischer Umgebung . iii F. Wissenschaftliche Beiträge Veröffentlichungen @BULLET M. Demper, W. Heimbrodt, C. Bradford, and K. A. Prior, Optical measurements of field-induced phenomena of the magnetic phase transition in quasi 2D MnS layers grown by MBE, J. Nanopart. Res. 13 (2011) 5635.
  65. xiv C. Literaturverzeichnis [107] F. den Broeder, W. Hoving, and P. Bloemen, Magnetic anisotropy of multilayers, MMM 93 (1991) 562 .
  66. H. R. O'Neal and N. E. Phillips, Low-Temperature Heat Capacities of Indium and Tin, Phys. Rev. 137 (1965) A748.
  67. AuCoin, Low-temperature specific heat anomalies in the group V transition metals, J. Low Temp. Phys. 28 (1977) 241.
  68. @BULLET M. Demper, L. Chen, H.-A. Krug von Nidda, C. Bradford, A. Loidl, K. A. Prior, and W. Heimbrodt, Magnetic field induced changes of the magnetic phase transition in metastable zinc blende MnS layers grown by MBE, Physica Status Solidi (c) 6 (2010) 1636.
  69. W. Xiong, H. Zhang, L. Vitos, and M. Selleby, Magnetic phase diagram of the Fe-Ni system, Act. Mat. 59 (2011) 521 .
  70. G. I. Makovetskii and G. M. Shakhlevich, Magnetic properties of the CrS 1−x Se x system, PSS (a) 47 (1978) 219.
  71. L. Corliss, N. Elliott, and J. Hastings, Magnetic Structures of the Polymorphic Forms of Manganous Sulfide, Phys. Rev. 104 (1956) 924.
  72. Y. Q. Yang, P. H. Keesom, J. K. Furdyna, and W. Giriat, Magnetic susceptibility and the spin-glass transition of Cd 1−x Mn x S and Zn 1−x Mn x S at low temperatures, J. Sol. Stat. Chem. 49 (1983) 20 .
  73. J. M. D. Coey, Magnetism and magnetic materials, Cambridge university press (2010).
  74. D. Hobbs and J. J Hafner, Magnetism and magneto-structural effects in transition-metal sulphides, J. Phys.: Condens. Matter 11 (1999) 8197.
  75. S. Blundell, Magnetism in condensed matter, Oxford University Press (2007).
  76. I. Ishibe, Y. Nabetani, T. Kato, and T. Matsumoto, MBE growth and RHEED cha- racterization of MnSe/ZnSe superlattices on GaAs (1 0 0) substrates, J. Crystal Growth 214/215 (2000) 172.
  77. M. Godlewski, M. Surma, V. Y. Ivanov, and T. P. Surkova, Mechanisms of radiative and nonradiative recombination in ZnSe:Cr and ZnSe:Fe, Low Temp. Phys. 30 (2004) 891.
  78. J. Gunn, Microwave oscillations of current in III-V semiconductors, Sol. Stat. Comm 1 (1963) 88 .
  79. T. Kurz, L. Chen, F. J. Brieler, P. J. Klar, H.-A. K. von Nidda, M. Fröba, W. Heim- brodt, and A. Loidl, Minimal number of atoms to constitute a magnet: Suppression of magnetic order in spherical MnS nanoparticles, Phys. Rev. B 78 (2008) 132408.
  80. Rhyne, Neutron-diffraction studies of zinc-blende MnTe epitaxial films and MnTe/ZnTe superlattices: The effect of strain and dilution on a strongly frustrated fcc antiferromagnet, Phys. Rev. B 48 (1993) 12817.
  81. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydro- thermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6024.
  82. P. Sengupta, C. D. Batista, R. D. McDonald, S. Cox, J. Singleton, L. Huang, T. P. Papageorgiou, O. Ignatchik, T. Herrmannsdörfer, J. L. Manson, J. A. Schlueter, K. A. Funk, and J. Wosnitza, Nonmonotonic field dependence of the Néel temperature in the quasi-two-dimensional magnet [Cu(HF 2 )(pyz) 2 ]BF 4 , Phys. Rev. B 79 (2009) 060409.
  83. E. U. Condon, Nuclear Motions Associated with Electron Transitions in Diatomic Mole- cules, Phys. Rev. 32 (1928) 858.
  84. C. S. Kelley and F. Williams, Optical Absorption Spectra of Chromium-Doped Zinc Sulfide Crystals, Phys. Rev. B 2 (1970) 3.
  85. L. Chen, W. Heimbrodt, P. J. Klar, M. Fröba, C. Ronning, and H.-A. K. von Nidda, Optical and magnetic properties of quasi one-dimensional dilute magnetic ZnMnS and antiferromagnetic MnS, PSS (b) 247 (2010) 2522.
  86. K. Shahzad, D. J. Olego, and C. G. V. de Walle, Optical characterization and band offsets in ZnSe-ZnSxSe1 − x strained-layer superlattices, Phys. Rev. B 38 (1988) 1417.
  87. W. Heimbrodt, C. Benecke, O. Goede, and H. E. Gumlich, Optical effects due to antiferromagnetic spin-ordering in (Cd,Mn)S at highest Mn concentrations, PSS (b) 154 (1989) 405.
  88. Internationale Konferenzen @BULLET Poster: International Conference on Nanoscale Magnetism 2010, Istanbul, Türkei: M. Demper, C. Bradford, K. A. Prior, and W. Heimbrodt, Optical measurements of field induced anomalies of the magnetic phase transition in quasi 2D MnS layers grown by MBE. xxiv Wissenschaftliche Beiträge @BULLET Poster: International Conference on II-VI Compounds 2009, St. Petersburg, Russ- land M. Demper, L. Chen, C. Bradford, H.-A. Krug von Nidda, K. A. Prior, A. Loidl, and W. Heimbrodt, Optical and magnetic properties of zinc blende MnS in case of 3D- 2D transition.
  89. J. W. Allen, G. Lucovsky, and J. J. C. Mikkelsen, Optical properties and electronic structure of crossroads material MnTe, Sol. Stat. Phys. 24 (1977) 367.
  90. O. Goede and W. Heimbrodt, Optical Properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystal and superlattices, PSS (b) 146 (1988) 11.
  91. @BULLET Vortrag: DPG-Früjahrstagung 2011 Dresden Sektion Kondensierte Materie: M. Demper, C. Bradford, K. A. Prior, and W. Heimbrodt, Optical studies of magnetic field induced phenomena in MBE grown MnS layer.
  92. W. Heimbrodt, C. Benecke, O. Goede, and H. E. Gumlich, Optical study of the an- tiferromagnetic phase Transition in (Cd,Mn)S at highest Mn concentration, J. Crystal Growth 101 (1990) 911.
  93. W. Heimbrodt, O. Goede, T. Köpp, R. Enderlein, M. Pessa, and J. Lilja, Optical study of ZnSe and (Zn,Mn)Se MBE layers on GaAs, J. Crystal Growth 101 (1990) 705.
  94. V. Weinhold, Optische Untersuchungen von MnS als Randkomponente der semimagneti- schen Halbleitermischkristalle (Zn,Mn)S und (Cd,Mn)S, Dissertation, Humboldt Uni- versität Berlin (1991).
  95. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710.
  96. H. J. M. de Groot and L. J. de Jongh, Phase diagrams of weakly anisotropic Heisen- berg antiferromagnets: III. Nonlinear excitations and random fields in quasi 2-dimensional systems, Sol. Stat. Comm 56 (1985) 7 .
  97. D. Fan, X. Yang, H. Wang, Y. Zhang, and H. Yan, Photoluminescence of MnS thin film prepared by chemical bath deposition, Physica B 337 (2003) 165.
  98. S. Bhaskar, P. S. Dobal, B. K. Rai, R. S. Katiyar, H. D. Bist, J.-O. Ndap, and A. Burger, Photoluminescence study of deep levels in Cr-doped ZnSe, J. Appl. Phys. 85 (1999) 439.
  99. E. Müller and W. Gebhardt, Position and lifetime of photoluminescence in Cd 1−x Mn x Te and Zn 1−x Mn x Te, PSS (b) 137 (1986) 259.
  100. H. M. Pathan, S. S. Kale, C. D. Lokhande, S.-H. Han, and O.-S. Joo, Preparation and characterization of amorphous manganese sulfide thin films by SILAR method, Mat. Res. Bulletin 42 (2007) 1565.
  101. C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner, and H. Tributsch, Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films , Thin Solid Films 330 (1998) 70.
  102. W. Nolting, Quantentheorie des Magnetismus, Tl. 2, Modelle, Teubner Verlag (1997).
  103. L. Chen, F. J. Brieler, M. Fröba, P. J. Klar, and W. Heimbrodt, Quantitative des- cription of the temporal behaviour of the internal Mn 3d 5 luminescence in ensembles of Zn 0.99 Mn 0.01 S quantum dots, Phys. Rev. B 75 (2007) 241303.
  104. W. G. Nilsen, Raman spectrum of cubic ZnS, Phys. Rev. 182 (1969) 838.
  105. T. H. Keil, Shapes of Impurity absorption bands in solids, Phys. Rev. 140 (1965) A 601.
  106. L. Orgel, Spectra of transition-metal complexes, J. Chem. Phys. 23 (1955) 1004.
  107. SQUID: Übergangstemperaturen in Abhängigkeit der Chromkonzentration 123
  108. L. Bartel, Stability of f.c.c. type-2 antiferromagnetic ordering and comments on the cal- culation of exchange constants: Application to MnO, [alpha]-MnS, NiO, GdP and GdAs, Sol. Stat. Comm. 11 (1972) 55 .
  109. M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Study of the 2.0-eV photoluminescence band in Cd 1−x Mn x Te semiconductor alloys, Phys. Rev. B 26 (1982) 3165.
  110. J. Kanamori, Superexchange interaction and symmetry properties of elctron orbitals, J. Phys. Chem. Solids 10 (1959) 87.
  111. E. A. Eliseev, A. N. Morozovska, M. D. Glinchuk, B. Y. Zaulychny, V. V. Skorokhod, and R. Blinc, Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems, Phys. Rev. B 82 (2010) 085408.
  112. Temepraturabhängige Absorptionsmessungen an einer α-MnS-Struktur . . 82
  113. J. F. MacKay, W. M. Becker, J. Spalek, and U. Debska, Temperature and magnetic-field dependence of the Mn 2+ 4 T 1 ( 4 G) → 6 A 1 ( 6 S) photoluminescence band in Zn 0.5 Mn 0.5 Se, Phys. Rev. B 42 (1990) 1743.
  114. V. Großmann, M. Behringer, H. Heinke, and D. Hommel, Temperature-dependent measurements in ZnSe heterostructures by high-resolution X-ray diffraction, J. Crystal Growth 184/185 (1998) 100.
  115. Temperaturentwicklung des Mangan 3d-Übergangs der MnCrS-Schichten . 120
  116. M. Lax, The Franck-Condon Principle and its application to crystals, J. Chem. Phys. 20 (1952) 1752.
  117. K. Huang and A. Rhys, Theory of Light Absorption and Non-Radiative Transitions in F-Centres, Proc. Roy. Soc. A204 (1950) 406.
  118. R. R. Reeber, Thermal expansion of some group IV elements and ZnS, PSS (a) 32 (1975) 321.
  119. W. S. Carter, The specific heat of two polymorphic forms of mananous sulphides and the inferredpossibility of antiferromagnetic ordering in stacking faults, Proc. Phys. Soc. 76 (1960) 969.
  120. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181.
  121. D. R. Huffman, Total Intensities of Some Crystal Field Transitions in MnO and MnS Related to the Antiferromagnetism, J. Appl. Phys. 40 (1969) 1334.
  122. M. Meschke, Untersuchungen der magnetischen Eigenschaften kubischer Antiferroma- gneten, Dissertation, TU Berlin (2001).
  123. Zeitaufgelöste Messung der niederenegtischen Emissionslinien des MnCrS 116
  124. L. Passell, O. W. Dietrich, and J. Als-Nielsen, Neutron scattering from the Heisenberg ferromagnets EuO and EuS. I. The exchange interactions, Phys. Rev. B 14 (1976) 4897.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten