Publikationsserver der Universitätsbibliothek Marburg

Titel:Pituitary adenylate cyclase-activating polypeptide mediates differential signaling through PAC1 receptor splice variants and activates non-canonical cAMP dependent gene induction in the nervous system - Implications for homeostatic stress-responding
Autor:Holighaus, Yvonne
Weitere Beteiligte: Weihe, Eberhard (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0551
DOI: https://doi.org/10.17192/z2011.0551
URN: urn:nbn:de:hebis:04-z2011-05513
DDC: Naturwissenschaften
Titel (trans.):Pituitary adenylate cyclase-activating polypeptide aktiviert differenzielle Signaltransduktion via PAC1-Rezeptor-Splice-Varianten und nicht-kanonische cAMP-abhängige Geninduktion im Nervensystem - Implikationen für homöostatische Stressantworten
Publikationsdatum:2011-08-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
nervous system, Nervensystem, G protein-coupled receptors, signal transduction, Neuropeptide, G-Protein gekoppelte Rezeptoren, neuropharmacology, Neuropharmakologie, stress, PACAP, neuropeptides, Signaltransduktion, Genexpression, Stress, gene expression, PACAP

Summary:
Pituitary adenylate cyclase-activating polypeptide (PACAP)-mediated activation of its G protein-coupled receptor PAC1 results in activation of the two G proteins Gs and Gq to alter second messenger generation and gene transcription in the nervous system, important for homeostatic responses to stress and injury. PAC1 occurs in different splice variants of the third intracellular loop, designated PAC1null, hop or hip, affecting second messenger generation as shown in non-neural cells. At the splanchnico-adrenomedullary synapse, PACAP is required for prolonged catecholamine secretion from chromaffin cells to restore homeostasis during prolonged periods of stress. In the central nervous system, PACAP is neuroprotective in neurodegenerative conditions associated with e.g., stroke. In the present study, PAC1 splice variant-specific second messenger production and activation of homeostatic responses were investigated in neuroendocrine and neural cells. Heterologous expression of the major PAC1 splice variant of adrenomedullary chromaffin cells, PAC1hop, in PC12-G cells reconstituted a PACAP-mediated Ca2+ and prolonged secretory response similar to the one observed in primary chromaffin cells. The Ca2+ response mediated by PAC1null was somewhat smaller and PAC1hip failed to couple to Ca2+. Neither variant conferred prolonged catecholamine release, suggesting that expression of the hop cassette in the third intracellular loop of the receptor is required for sustained catecholamine release from neuroendocrine cells. In NG108-15 cells, heterologous expression of the PAC1hop, null and hip receptor conferred PACAP-mediated intracellular cAMP generation, while elevation of [Ca2+]i occurred efficiently in PAC1hop- and to a lesser extent in PAC1null-expressing cells. Expression of PAC1hip did not confer an intracellular Ca2+ response, indicating that PAC1hop is the receptor variant most efficiently coupled to combinatorial signaling through cAMP and Ca2+. PAC1hop-mediated signaling activated the mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases 1 and 2 (ERK1/2). Signaling to ERK proceeded through cAMP independently of the cAMP dependent protein kinase (PKA). PACAP induced transcription of the gene encoding the putative neuroprotectant stanniocalcin 1 (STC1), which has previously been implicated in neuronal resistance to hypoxic/ ischemic insult; gene induction proceeded through ERK but not PKA. Cyclic AMP generation by forskolin did not activate ERK in NG108-15 cells, but rather induced STC1 mRNA elevation through the canonical PKA dependent pathway. This suggests that activation of non-canonical cAMP signaling, mediating ERK-dependent gene induction, requires additional signaling through Ca2+ via PAC1hop in these cells. Primary rat cortical neurons expressed predominantly the PAC1hop and null variants. Exposure of cortical neurons to PACAP resulted in elevation of the two second messengers cAMP and Ca2+, activation of ERK1/2, and induction of STC1 gene transcription. PACAP-mediated ERK activation proceeded through cAMP but not PKA, and STC1 was induced via ERK but not PKA. Pharmacological stimulation of adenylate cyclases by forskolin also resulted in increased ERK phosphorylation and STC1 mRNA elevation independently of PKA. These results indicate that cAMP production alone is sufficient to activate ERK in differentiated cortical neurons, unlike in the less differentiated NG108-15 cell line. Induction of another PACAP target gene, brain-derived neurotrophic factor (BDNF), occurred through the canonical cAMP/PKA pathway. PACAP has been shown by our laboratory and others to be neuroprotective against ischemia in rodent stroke models. To begin to define the mechanism of this neuroprotection, we employed two cell culture stroke models. Rat cortical neurons subjected to either oxygen-glucose-deprivation or glutamate-induced excitotoxicity underwent cell death as expected. However, treatment with PACAP did not increase neuronal survival in either of the two models, and STC1 over-expression also failed to increase resistance to neuronal cell death during glutamate-induced excitotoxicity. These data suggest that the protective effects of the neurotrophic peptide PACAP and the putative neuroprotectant STC1 during neurodegenerative conditions in vivo are mediated through cells absent in cultures of cortical neurons, such as glial cells. In conclusion, the present study has demonstrated that expression of different PAC1 splice variants determines the degree of activation of two different second messenger pathways that may mediate different functional outcomes during stress-responding. PACAP mediates ERK activation and STC1 induction via non-canonical cAMP signaling. The selective pharmacological activation of this potentially neuroprotective pathway, which is different from the cAMP/PKA pathway critical for learning and memory, could have therapeutic implications for neuroprotection in vivo.

Bibliographie / References

  1. Stroth, N. (2010). The Neuropeptide PACAP Mediates Stimulus-Transcription Coupling in Hypothalamic-Pituitary-Adrenocortical Axis and Sympathetic Nervous System (Ph.D. dissertation, Philipps-University, Marburg).
  2. Ito, D., Walker, J.R., Thompson, C.S., Moroz, I., Lin, W., Veselits, M.L., Hakim, A.M., Fienberg, A.A., and Thinakaran, G. (2004). Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24, 9456-9469.
  3. References XXIII Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038.
  4. Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 31, 193-209.
  5. Ronaldson, E., Robertson, D.N., Johnson, M.S., Holland, P.J., Mitchell, R., and Lutz, E.M. (2002). Specific interaction between the hop1 intracellular loop 3 domain of the human PAC(1) receptor and ARF. Regul Pept 109, 193-198.
  6. Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regul Pept 72, 1-8.
  7. Hofmann, F., Biel, M., and Flockerzi, V. (1994). Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 17, 399-418.
  8. Ushiyama, M., Ikeda, R., Sugawara, H., Yoshida, M., Mori, K., Kangawa, K., Inoue, K., Yamada, K., and Miyata, A. (2007). Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop. Mol Pharmacol 72, 103-111.
  9. Martin, P., Albagli, O., Poggi, M.C., Boulukos, K.E., and Pognonec, P. (2006). Development of a new bicistronic retroviral vector with strong IRES activity. BMC Biotechnol 6, 4.
  10. Kao, S., Jaiswal, R.K., Kolch, W., and Landreth, G.E. (2001). Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276, 18169-18177.
  11. Otto, C., Kovalchuk, Y., Wolfer, D.P., Gass, P., Martin, M., Zuschratter, W., Grone, H.J., Kellendonk, C., Tronche, F., Maldonado, R., et al. (2001a). Impairment of mossy fiber long- term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 21, 5520-5527.
  12. Santos, S.D., Verveer, P.J., and Bastiaens, P.I. (2007). Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9, 324-330.
  13. Robberecht, P., Gourlet, P., De Neef, P., Woussen-Colle, M.C., Vandermeers-Piret, M.C., Vandermeers, A., and Christophe, J. (1992). Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem 207, 239-246.
  14. Kienlen Campard, P., Crochemore, C., Rene, F., Monnier, D., Koch, B., and Loeffler, J.P. (1997). PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol 16, 323-333.
  15. Pellegri, G., Magistretti, P.J., and Martin, J.L. (1998). VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. Eur J Neurosci 10, 272-280.
  16. Marley, P.D., Cheung, C.Y., Thomson, K.A., and Murphy, R. (1996). Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells. J Auton Nerv Syst 60, 141-146.
  17. McCulloch, D.A., Lutz, E.M., Johnson, M.S., Robertson, D.N., MacKenzie, C.J., Holland, P.J., and Mitchell, R. (2001). ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. Mol Pharmacol 59, 1523-1532.
  18. Watanabe, T., Ohtaki, T., Kitada, C., Tsuda, M., and Fujino, M. (1990). Adrenal pheochromocytoma PC12h cells respond to pituitary adenylate cyclase activating polypeptide. Biochem Biophys Res Commun 173, 252-258.
  19. Kawasaki, H., Springett, G.M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., Housman, D.E., and Graybiel, A.M. (1998). A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275-2279.
  20. Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res 92, 78-84.
  21. Long, Y., Zou, L., Liu, H., Lu, H., Yuan, X., Robertson, C.S., and Yang, K. (2003). Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 71, 710-720.
  22. Nicot, A., Otto, T., Brabet, P., and Dicicco-Bloom, E.M. (2004). Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci 24, 8786-8795.
  23. Pilzer, I., and Gozes, I. (2006). A splice variant to PACAP receptor that is involved in spermatogenesis is expressed in astrocytes. Ann N Y Acad Sci 1070, 484-490.
  24. Shoge, K., Mishima, H.K., Saitoh, T., Ishihara, K., Tamura, Y., Shiomi, H., and Sasa, M. (1999). Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res 839, 66-73.
  25. Simon, R.P., Swan, J.H., Griffiths, T., and Meldrum, B.S. (1984). Blockade of N-methyl-D- aspartate receptors may protect against ischemic damage in the brain. Science 226, 850-852.
  26. Olney, J.W., and Sharpe, L.G. (1969). Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166, 386-388.
  27. Wagner, G.F., and Jaworski, E. (1994). Calcium regulates stanniocalcin mRNA levels in primary cultured rainbow trout corpuscles of stannius. Mol Cell Endocrinol 99, 315-322.
  28. Vossler, M.R., Yao, H., York, R.D., Pan, M.G., Rim, C.S., and Stork, P.J. (1997). cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rap1-dependent pathway. Cell 89, 73- 82.
  29. Zhou, C.J., Kikuyama, S., Shibanuma, M., Hirabayashi, T., Nakajo, S., Arimura, A., and Shioda, S. (2000). Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC(1)-R) in the rat brain by in situ RT-PCR.
  30. McCudden, C.R., James, K.A., Hasilo, C., and Wagner, G.F. (2002). Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. J Biol Chem 277, 45249-45258.
  31. Vitale, M.L., Seward, E.P., and Trifaro, J.M. (1995). Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14, 353-363.
  32. References XXXI Sundell, K., Bjornsson, B.T., Itoh, H., and Kawauchi, H. (1992). Chum salmon (Oncorhynchus keta) stanniocalcin inhibits in vitro intestinal calcium uptake in Atlantic cod (Gadus morhua). J Comp Physiol B 162, 489-495.
  33. Pisegna, J.R., and Wank, S.A. (1996). Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 271, 17267-17274.
  34. Comparative neuroprotective effects of preischemic PACAP and VIP administration in permanent occlusion of the middle cerebral artery in rats. Neuro Endocrinol Lett 23, 249-254.
  35. Hamprecht, B., Glaser, T., Reiser, G., Bayer, E., and Propst, F. (1985). Culture and characteristics of hormone-responsive neuroblastoma X glioma hybrid cells. Methods Enzymol 109, 316-341.
  36. Kuo, J.F., and Greengard, P. (1969). Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A 64, 1349-1355.
  37. Ravni, A., Eiden, L.E., Vaudry, H., Gonzalez, B.J., and Vaudry, D. (2006). Cycloheximide treatment to identify components of the transitional transcriptome in PACAP-induced PC12 cell differentiation. J Neurochem 98, 1229-1241.
  38. Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Kozicz, T., and Arimura, A. (2000). Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31, 1411-1417.
  39. Boksa, P., and Livett, B.G. (1984). Desensitization to nicotinic cholinergic agonists and K+, agents that stimulate catecholamine secretion, in isolated adrenal chromaffin cells. J Neurochem 42, 607-617.
  40. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 77, 65-75.
  41. Waschek, J.A., Richards, M.L., and Bravo, D.T. (1995). Differential expression of VIP/PACAP receptor genes in breast, intestinal, and pancreatic cell lines. Cancer Lett 92, 143-149.
  42. Pisegna, J.R., Moody, T.W., and Wank, S.A. (1996). Differential signaling and immediate- early gene activation by four splice variants of the human pituitary adenylate cyclase- activating polypeptide receptor (hPACAP-R). Ann N Y Acad Sci 805, 54-64; discussion 64- 66.
  43. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H., and Journot, L. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170-175.
  44. Cavallaro, S., D'Agata, V., Guardabasso, V., Travali, S., Stivala, F., and Canonico, P.L. (1995). Differentiation induces pituitary adenylate cyclase-activating polypeptide receptor expression in PC-12 cells. Mol Pharmacol 48, 56-62.
  45. Hashimoto, H., Nogi, H., Mori, K., Ohishi, H., Shigemoto, R., Yamamoto, K., Matsuda, T., Mizuno, N., Nagata, S., and Baba, A. (1996). Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol 371, 567-577.
  46. Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476, 388-413.
  47. Reglodi, D., Lubics, A., Kiss, P., Lengvari, I., Gaszner, B., Toth, G., Hegyi, O., and Tamas, A. (2006). Effect of PACAP in 6-OHDA-induced injury of the substantia nigra in intact young and ovariectomized female rats. Neuropeptides 40, 265-274.
  48. Nowak, J.Z., Jozwiak-Bebenista, M., and Bednarek, K. (2007). Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition. Peptides 28, 1706-1712.
  49. References XXIX Reglodi, D., Tamas, A., Somogyvari-Vigh, A., Szanto, Z., Kertes, E., Lenard, L., Arimura, A., and Lengvari, I. (2002). Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 23, 2227-2234.
  50. Moller, K., and Sundler, F. (1996). Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla. Regul Pept 63, 129- 139.
  51. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K., and Nagata, S. (1992). Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8, 811-819.
  52. gene is not essential for growth and development. Mol Cell Biol 25, 10604-10610.
  53. Rausch, D.M., Iacangelo, A.L., and Eiden, L.E. (1988). Glucocorticoid-and nerve growth factor-induced changes in chromogranin A expression define two different neuronal phenotypes in PC12 cells. Mol Endocrinol 2, 921-927.
  54. Said, S.I., Dickman, K., Dey, R.D., Bandyopadhyay, A., De Stefanis, P., Raza, S., Pakbaz, H., and Berisha, H.I. (1998). Glutamate toxicity in the lung and neuronal cells: prevention or attenuation by VIP and PACAP. Ann N Y Acad Sci 865, 226-237.
  55. Sacco, R.L., DeRosa, J.T., Haley, E.C., Jr., Levin, B., Ordronneau, P., Phillips, S.J., Rundek, T., Snipes, R.G., and Thompson, J.L. (2001). Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA 285, 1719- 1728.
  56. Neer, E.J. (1995). Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249-257.
  57. Chen, C., Jamaluddin, M.S., Yan, S., Sheikh-Hamad, D., and Yao, Q. (2008). Human stanniocalcin-1 blocks TNF-alpha-induced monolayer permeability in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 28, 906-912.
  58. Wagner, G.F., Vozzolo, B.L., Jaworski, E., Haddad, M., Kline, R.L., Olsen, H.S., Rosen, C.A., Davidson, M.B., and Renfro, J.L. (1997). Human stanniocalcin inhibits renal phosphate excretion in the rat. J Bone Miner Res 12, 165-171.
  59. Westberg, J.A., Serlachius, M., Lankila, P., and Andersson, L.C. (2007a). Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart. Am J Physiol Heart Circ Physiol 293, H1766-1771.
  60. Chang, A.C., and Reddel, R.R. (1998). Identification of a second stanniocalcin cDNA in mouse and human: stanniocalcin 2. Mol Cell Endocrinol 141, 95-99.
  61. Luo, C.W., Pisarska, M.D., and Hsueh, A.J. (2005). Identification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary. Endocrinology 146, 469-476.
  62. Matsuyama, S., Matsumoto, A., Hashimoto, H., Shintani, N., and Baba, A. (2003). Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase-activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice. Neuroreport 14, 2095-2098.
  63. Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization. J Neurosci Res 71, 504-515.
  64. Van Wagoner, N.J., and Benveniste, E.N. (1999). Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100, 124-139.
  65. Harmar, A.J., Arimura, A., Gozes, I., Journot, L., Laburthe, M., Pisegna, J.R., Rawlings, S.R., Robberecht, P., Said, S.I., Sreedharan, S.P., et al. (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50, 265-270.
  66. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N., and Arimura, A. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38).
  67. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D., and Coy, D.H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164, 567-574.
  68. Shioda, S., Shuto, Y., Somogyvari-Vigh, A., Legradi, G., Onda, H., Coy, D.H., Nakajo, S., and Arimura, A. (1997). Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 28, 345-354.
  69. Shioda, S., Shimoda, Y., Hori, T., Mizushima, H., Ajiri, T., Funahashi, H., Ohtaki, K., and Ryushi, T. (2000). Localization of the pituitary adenylate cyclase-activating polypeptide receptor and its mRNA in the rat adrenal medulla. Neurosci Lett 295, 81-84.
  70. Moro, O., and Lerner, E.A. (1997). Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272, 966- 970.
  71. Jin, K., Mao, X.O., Zhu, Y., and Greenberg, D.A. (2002). MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem 80, 119-125.
  72. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 348, 1333-1341.
  73. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291, 317-324.
  74. Tesmer, J.J., Dessauer, C.W., Sunahara, R.K., Murray, L.D., Johnson, R.A., Gilman, A.G., and Sprang, S.R. (2000). Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39, 14464-14471.
  75. Chang, A.C., Dunham, M.A., Jeffrey, K.J., and Reddel, R.R. (1996). Molecular cloning and characterization of mouse stanniocalcin cDNA. Mol Cell Endocrinol 124, 185-187.
  76. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10, 1635-1641.
  77. References XXVIII Pisegna, J.R., and Wank, S.A. (1993). Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci U S A 90, 6345-6349.
  78. Sattler, R., and Tymianski, M. (2001). Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24, 107-129.
  79. Leveille, F., El Gaamouch, F., Gouix, E., Lecocq, M., Lobner, D., Nicole, O., and Buisson, A. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 22, 4258-4271.
  80. Hokfelt, T., Bartfai, T., and Bloom, F. (2003). Neuropeptides: opportunities for drug discovery. Lancet Neurol 2, 463-472.
  81. Brenneman, D.E. (2007). Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides 28, 1720-1726.
  82. Hetman, M., Kanning, K., Cavanaugh, J.E., and Xia, Z. (1999). Neuroprotection by brain- derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274, 22569-22580.
  83. Chen, Y., Samal, B., Hamelink, C.R., Xiang, C.C., Chen, Y., Chen, M., Vaudry, D., Brownstein, M.J., Hallenbeck, J.M., and Eiden, L.E. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regul Pept 137, 4-19. References XX Gerritsen, M.E., and Wagner, G.F. (2005). Stanniocalcin: no longer just a fish tale. Vitam Horm 70, 105-135.
  84. Shintani, N., Suetake, S., Hashimoto, H., Koga, K., Kasai, A., Kawaguchi, C., Morita, Y., Hirose, M., Sakai, Y., Tomimoto, S., et al. (2005). Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul Pept 126, 123-128.
  85. Byun, J.S., Lee, J.W., Kim, S.Y., Kwon, K.J., Sohn, J.H., Lee, K., Oh, D., Kim, S.S., Chun, W., and Lee, H.J. (2010). Neuroprotective effects of stanniocalcin 2 following kainic acid- induced hippocampal degeneration in ICR mice. Peptides 31, 2094-2099.
  86. Hashimoto, H., Shintani, N., and Baba, A. (2006). New insights into the central PACAPergic system from the phenotypes in PACAP-and PACAP receptor-knockout mice. Ann N Y Acad Sci 1070, 75-89.
  87. Kemp, J.A., and McKernan, R.M. (2002). NMDA receptor pathways as drug targets. Nat Neurosci 5 Suppl, 1039-1042.
  88. Lee, D.K., George, S.R., and O'Dowd, B.F. (2002). Novel G-protein-coupled receptor genes expressed in the brain: continued discovery of important therapeutic targets. Expert Opin Ther Targets 6, 185-202.
  89. References XXII Hasilo, C.P., McCudden, C.R., Gillespie, J.R., James, K.A., Hirvi, E.R., Zaidi, D., and Wagner, G.F. (2005). Nuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation. Am J Physiol Endocrinol Metab 289, E634-642.
  90. Masuo, Y., Tokito, F., Matsumoto, Y., Shimamoto, N., and Fujino, M. (1994). Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) and its binding sites in the rat brain. Neurosci Lett 170, 43-46.
  91. Lu, N., Zhou, R., and DiCicco-Bloom, E. (1998). Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res 53, 651-662.
  92. Paciga, M., Watson, A.J., DiMattia, G.E., and Wagner, G.F. (2002). Ovarian stanniocalcin is structurally unique in mammals and its production and release are regulated through the luteinizing hormone receptor. Endocrinology 143, 3925-3934.
  93. Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology 143, 868-876.
  94. References XXXIII Vaudry, D., Pamantung, T.F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., Beauvillain, J.C., and Gonzalez, B.J. (2002b). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci 15, 1451-1460.
  95. Watanabe, T., Shimamoto, N., Takahashi, A., and Fujino, M. (1995). PACAP stimulates catecholamine release from adrenal medulla: a novel noncholinergic secretagogue. Am J Physiol 269, E903-909.
  96. PACAP stimulates the sustained phosphorylation of tyrosine hydroxylase at serine 40. Cell Signal 19, 1141-1149.
  97. Pugh, P.C., and Margiotta, J.F. (2006). PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol Cell Neurosci 31, 586-595.
  98. Martin, T.F., and Grishanin, R.N. (2003). PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol 71, 267-286.
  99. Vaudry, D., Chen, Y., Hsu, C.M., and Eiden, L.E. (2002a). PC12 cells as a model to study the neurotrophic activities of PACAP. Ann N Y Acad Sci 971, 491-496.
  100. Phospholipase C activation by VIP1 and VIP2 receptors expressed in COS 7 cells involves a pertussis toxin-sensitive mechanism. Ann N Y Acad Sci 805, 579-584.
  101. Cavallaro, S., Copani, A., D'Agata, V., Musco, S., Petralia, S., Ventra, C., Stivala, F., Travali, S., and Canonico, P.L. (1996). Pituitary adenylate cyclase activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Mol Pharmacol 50, 60-66.
  102. Shioda, S., Ohtaki, H., Nakamachi, T., Dohi, K., Watanabe, J., Nakajo, S., Arata, S., Kitamura, S., Okuda, H., Takenoya, F., et al. (2006). Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N Y Acad Sci 1070, 550-560.
  103. Hashimoto, H., Kunugi, A., Arakawa, N., Shintani, N., Fujita, T., Kasai, A., Kawaguchi, C., Morita, Y., Hirose, M., Sakai, Y., et al. (2003). Possible involvement of a cyclic AMP- dependent mechanism in PACAP-induced proliferation and ERK activation in astrocytes.
  104. Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res 736, 280-286.
  105. Wagner, G.F., Gellersen, B., and Friesen, H.G. (1989). Primary culture of teleocalcin cells from rainbow trout corpuscles of Stannius: regulation of teleocalcin secretion by calcium. Mol Cell Endocrinol 62, 31-39.
  106. Wagner, G.F., Hampong, M., Park, C.M., and Copp, D.H. (1986). Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 63, 481-491.
  107. York, R.D., Yao, H., Dillon, T., Ellig, C.L., Eckert, S.P., McCleskey, E.W., and Stork, P.J. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622-626.
  108. Kong, L.Y., Maderdrut, J.L., Jeohn, G.H., and Hong, J.S. (1999). Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 91, 493-500.
  109. Hanoune, J., and Defer, N. (2001). Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41, 145-174.
  110. Hetman, M., and Gozdz, A. (2004). Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271, 2050-2055.
  111. Ulrich, C.D., 2nd, Holtmann, M., and Miller, L.J. (1998). Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 114, 382-397.
  112. Pierce, K.L., Premont, R.T., and Lefkowitz, R.J. (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3, 639-650.
  113. Haycock, J.W. (1996). Short-and long-term regulation of tyrosine hydroxylase in chromaffin cells by VIP and PACAP. Ann N Y Acad Sci 805, 219-230; discussion 230-211.
  114. Vaudry, D., Stork, P.J., Lazarovici, P., and Eiden, L.E. (2002d). Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648-1649.
  115. Tatsuno, I., Gottschall, P.E., and Arimura, A. (1991). Specific binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) in rat cultured astrocytes: molecular identification and interaction with vasoactive intestinal peptide (VIP). Peptides 12, 617-621.
  116. References XXV Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185.
  117. Chakraborty, A., Brooks, H., Zhang, P., Smith, W., McReynolds, M.R., Hoying, J.B., Bick, R., Truong, L., Poindexter, B., Lan, H., et al. (2007). Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. Am J Physiol Renal Physiol 292, F895-904.
  118. Lu, M., Wagner, G.F., and Renfro, J.L. (1994). Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 267, R1356- 1362.
  119. Rebois, R.V., Reynolds, E.E., Toll, L., and Howard, B.D. (1980). Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19, 1240-1248.
  120. Warne, T., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G., and Schertler, G.F. (2008). Structure of a beta1- adrenergic G-protein-coupled receptor. Nature 454, 486-491. References XXXIV Waschek, J.A. (2002). Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci 24, 14-23.
  121. Tomimatsu, N., and Arakawa, Y. (2008). Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. J Neurochem 107, 628- 635.
  122. Hashimoto, H., Hagihara, N., Koga, K., Yamamoto, K., Shintani, N., Tomimoto, S., Mori, W., Koyama, Y., Matsuda, T., and Baba, A. (2000). Synergistic induction of pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression by nerve growth factor and PACAP in PC12 cells. J Neurochem 74, 501-507.
  123. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells. J Biol Chem 278, 49549-49554.
  124. Sebolt-Leopold, J.S., and Herrera, R. (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4, 937-947.
  125. Lazarovici, P., Jiang, H., and Fink, D., Jr. (1998). The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras) G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol Pharmacol 54, 547-558.
  126. Lee, J.M., Zipfel, G.J., and Choi, D.W. (1999). The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7-14.
  127. References XXX Sheward, W.J., Lutz, E.M., and Harmar, A.J. (1995). The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 67, 409-418.
  128. Martin, R.L., Lloyd, H.G., and Cowan, A.I. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17, 251-257.
  129. Mustafa, T., Grimaldi, M., and Eiden, L.E. (2007). The hop cassette of the PAC1 receptor confers coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating polypeptide-evoked neurosecretion. J Biol Chem 282, 8079-8091.
  130. Propst, F., Moroder, L., Wunsch, E., and Hamprecht, B. (1979). The influence of secretin, glucagon and other peptides, of amino acids, prostaglandin endoperoxide analogues and diazepam on the level of adenosine 3',5'-cyclic monophosphate in neuroblastoma x glioma hybrid cells. J Neurochem 32, 1495-1500.
  131. Chang, A.C., Cha, J., Koentgen, F., and Reddel, R.R. (2005). The murine stanniocalcin 1
  132. Chang, A.C., Hook, J., Lemckert, F.A., McDonald, M.M., Nguyen, M.A., Hardeman, E.C., Little, D.G., Gunning, P.W., and Reddel, R.R. (2008). The murine stanniocalcin 2 gene is a negative regulator of postnatal growth. Endocrinology 149, 2403-2410.
  133. Onoue, S., Endo, K., Ohshima, K., Yajima, T., and Kashimoto, K. (2002a). The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23, 1471- 1478.
  134. The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J 20, 512-514.
  135. The neurotrophic activity of PACAP on rat cerebellar granule cells is associated with activation of the protein kinase A pathway and c-fos gene expression. Ann N Y Acad Sci 865, 92-99.
  136. Sherwood, N.M., Krueckl, S.L., and McRory, J.E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21, 619-670.
  137. Mustafa, T., and Eiden, L.E. (2006). The secretin superfamily: PACAP, VIP, and related neuropeptides. In Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Peptides and Proteins (Lim, R, Ed) pp 463-498, Springer, Heidelberg.
  138. Wagner, G.F., and Dimattia, G.E. (2006). The stanniocalcin family of proteins. J Exp Zool A Comp Exp Biol 305, 769-780.
  139. Lucas, D.R., and Newhouse, J.P. (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58, 193-201.
  140. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 334, 3-8.
  141. Taupenot, L., Mahata, M., Mahata, S.K., and O'Connor, D.T. (1999). Time-dependent effects of the neuropeptide PACAP on catecholamine secretion : stimulation and desensitization. Hypertension 34, 1152-1162.
  142. Luttrell, L.M. (2006). Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol 332, 3-49.
  143. Usdin, T.B., Bonner, T.I., and Mezey, E. (1994). Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135, 2662-2680.
  144. Zhu, Y., and Ikeda, S.R. (1994). VIP inhibits N-type Ca2+ channels of sympathetic neurons via a pertussis toxin-insensitive but cholera toxin-sensitive pathway. Neuron 13, 657-669.
  145. Ikonomidou, C., and Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1, 383-386.
  146. Murphy, L.O., and Blenis, J. (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31, 268-275.
  147. References XXVI Monaghan, T.K., Mackenzie, C.J., Plevin, R., and Lutz, E.M. (2008). PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 104, 74-88.
  148. MacKenzie, C.J., Lutz, E.M., Johnson, M.S., Robertson, D.N., Holland, P.J., and Mitchell, R. (2001). Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 receptor. Endocrinology 142, 1209-1217.
  149. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745.
  150. Lerner, E.A., Ribeiro, J.M., Nelson, R.J., and Lerner, M.R. (1991). Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. J Biol Chem 266, 11234-11236.
  151. Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., Bockaert, J., and Journot, L. (1996). Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem 271, 22146-22151.
  152. Ravni, A., Vaudry, D., Gerdin, M.J., Eiden, M.V., Falluel-Morel, A., Gonzalez, B.J., Vaudry, H., and Eiden, L.E. (2008). A cAMP-dependent, protein kinase A-independent signaling pathway mediating neuritogenesis through Egr1 in PC12 cells. Mol Pharmacol 73, 1688- 1708.
  153. Harmar, A.J. (2001). Family-B G-protein-coupled receptors. Genome Biol 2, REVIEWS3013.
  154. Ma, J., Endres, M., and Moskowitz, M.A. (1998). Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br J Pharmacol 124, 756-762.
  155. Zhang, K., Lindsberg, P.J., Tatlisumak, T., Kaste, M., Olsen, H.S., and Andersson, L.C. (2000). Stanniocalcin: A molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci U S A 97, 3637-3642.
  156. Zhang, K.Z., Westberg, J.A., Paetau, A., von Boguslawsky, K., Lindsberg, P., Erlander, M., Guo, H., Su, J., Olsen, H.S., and Andersson, L.C. (1998). High expression of stanniocalcin in differentiated brain neurons. Am J Pathol 153, 439-445.
  157. Martin, B., Lopez de Maturana, R., Brenneman, R., Walent, T., Mattson, M.P., and Maudsley, S. (2005). Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med 7, 3-36.
  158. Biel, M., and Michalakis, S. (2009). Cyclic nucleotide-gated channels. Handb Exp Pharmacol, 111-136.
  159. Vaudry, D., Gonzalez, B.J., Basille, M., Pamantung, T.F., Fontaine, M., Fournier, A., and Vaudry, H. (2000a). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci U S A 97, 13390-13395.
  160. Kuri, B.A., Chan, S.A., and Smith, C.B. (2009). PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J Neurochem 110, 1214-1225.
  161. References XXXII Trindade, D.M., Silva, J.C., Navarro, M.S., Torriani, I.C., and Kobarg, J. (2009). Low- resolution structural studies of human Stanniocalcin-1. BMC Struct Biol 9, 57.
  162. Wang, Y., Huang, L., Abdelrahim, M., Cai, Q., Truong, A., Bick, R., Poindexter, B., and Sheikh-Hamad, D. (2009). Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 86, 981-988.
  163. Stroth, N., and Eiden, L.E. (2010). Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165, 1025-1030.
  164. Ritter, S.L., and Hall, R.A. (2009). Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10, 819-830.
  165. Mustafa, T., Walsh, J., Grimaldi, M., and Eiden, L.E. (2010). PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca(2+) channels in PC12 cells. Cell Signal 22, 1420-1426.
  166. Hardingham, G.E., and Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11, 682-696.
  167. Stroth, N., Holighaus, Y., Ait-Ali, D., and Eiden, L.E. (2011). PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 1220, 49- 59.
  168. Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., Postina, R., van Leuven, F., Fahrenholz, F., and Kojro, E. (2011). Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J.
  169. Nicot, A., and DiCicco-Bloom, E. (2001). Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci U S A 98, 4758-4763.
  170. Stetler, R.A., Gao, Y., Zukin, R.S., Vosler, P.S., Zhang, L., Zhang, F., Cao, G., Bennett, M.V., and Chen, J. (2010). Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci U S A 107, 3204-3209.
  171. Sheikh-Hamad, D. (2010). Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 298, F248-254.
  172. Wagner, G.F., Guiraudon, C.C., Milliken, C., and Copp, D.H. (1995). Immunological and biological evidence for a stanniocalcin-like hormone in human kidney. Proc Natl Acad Sci U S A 92, 1871-1875.
  173. Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., Sakaue, M., Miyazaki, J., Niwa, H., Tashiro, F., et al. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98, 13355-13360.
  174. Said, S.I., and Mutt, V. (1970). Polypeptide with broad biological activity: isolation from small intestine. Science 169, 1217-1218.
  175. Westberg, J.A., Serlachius, M., Lankila, P., Penkowa, M., Hidalgo, J., and Andersson, L.C. (2007b). Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38, 1025-1030.
  176. Pouyssegur, J., and Lenormand, P. (2003). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 270, 3291-3299.
  177. Hashimoto, H., Ishihara, T., Shigemoto, R., Mori, K., and Nagata, S. (1993). Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 11, 333-342.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten