Publikationsserver der Universitätsbibliothek Marburg

Titel:Die dopaminerge Verankerung der Extraversion: Mechanismen und EEG-Indikatoren
Autor:Chavanon, Mira-Lynn
Weitere Beteiligte: Stemmler, Gerhard (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0463
URN: urn:nbn:de:hebis:04-z2011-04637
DOI: https://doi.org/10.17192/z2011.0463
DDC: Psychologie
Titel (trans.):Dopaminergic basis of extraversion: mechanisms and electrocortical signatures
Publikationsdatum:2011-08-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Elektroencephalogramm, Extraversion, Dopamin, dopamine, electroencephalography, extraversion

Zusammenfassung:
In der neuropsychobiologischen Theorie der Extraversion postulieren Depue und Collins (1999), dass die agentische Facette der Extraversion (i.e., Durchsetzungsvermögen, positive Emotionalität, Ehrgeiz, Dominanz) mit funktionalen Eigenschaften des mesocorticolimbischen Dopaminsystems zusammenhängt und dies zu beobachtbaren interindividuellen Unterschieden in Anreizmotivation, positiv-gefärbten emotionalen Erleben und kognitiv-behavioraler Flexibilität führt. Obwohl diese Theorie oft zitiert wird, fehlt es im Humanbereich an Studien, die die Kernannahmen der Theorie prüfen. Dies ist zu großem Maß der Tatsache geschuldet, dass ökonomische, non-invasive physiologische sowie behaviorale Maße fehlen, die sowohl sensitiv für Extraversion als auch für pharmakologische Manipulationen der dopaminergen Aktivität sind. Eine kürzlich erschienene pharmakologische Studie von Wacker, Chavanon und Stemmler (2006) ging dieses Problem an und fand, dass im Elektroenzephalogramm (EEG) die posteriore vs. anteriore Theta-Aktivität (4 – 8 Hz), die unter Ruhebedingungen aufgezeichnet wurde, sowohl sensitiv für Unterschiede zwischen hoch und niedrig Extravertierten als auch sensitiv für den selektiven D2-Rezeptor-Antagonisten Sulpirid war. Während hoch Extravertierte unter Placebo-Gabe eine stärker posterior gelagerte Theta-Aktivität als Introvertierte aufwiesen, zeigte sich nach der Einnahme von Sulpirid ein genau umgekehrtes Befundmuster. Neben diesem viel versprechenden EEG-Marker, gibt es Forschungsbefunde, die darauf hinweisen, dass auf der kognitiv-behavioralen Ebene das Arbeitsgedächtnis ein mögliches Korrelat der agentischen Extraversion sein könnte. Die vorliegende Dissertation betrachtet das Arbeitsgedächtnis (Studie 1) und den möglichen dopaminergen Indikator posteriore vs. anteriore Theta-Aktvität (Studien 2 und 3). Studie 1 untersuchte 40 männliche Probanden, die entweder extrem hohe oder niedrige Werte in agentischer Extraversion aufwiesen, mit einem n-back-Arbeitsgedächtnisparadigma, wobei die Probanden zuvor einer von zwei Substanzbedingungen zugeordnet wurden (Placebo vs. 200 mg Sulpird, doppelblind). Die Ergebnisse sprechen für eine dopaminerge Verbindung zwischen agentischer Extraversion und Arbeitsgedächtnis. Studie 2 betrachtete die posteriore vs. anteriore Theta-Aktivität genauer. Obwohl dieses Maß robust Assoziationen mit agentischer Extraversion aufweist, sind die neuralen Quellen unbekannt. Aufgrund von Imaging- und EEG-Studien scheint der anteriore cinguläre Cortex (ACC) als ein mögliches Substrat plausibel. Zur Prüfung dieser Hypothese wurde das Ruhe-EEG bei 78 hoch vs. niedrig extravertierte, männliche Probanden quellenlokalisiert. Unterschiede zwischen hoch und niedrig Extravertierten in der intrazerebralen Theta-Aktivität wurden innerhalb des rostralen ACCs lokalisiert. Der posteriore vs. anteriore Theta-Index korreliert hoch mit der Theta-Aktivität im rostralen ACC. Studie 3 beschäftigte sich mit der Replikation und Erweiterung der bisherigen Arbeiten zur posterioren vs. anterioren Theta-Aktivität. Insbesondere ging diese Studie der Frage nach, welche Mechanismen extraversionsabhängigen dopaminergen Substanzeffekten zugrunde liegen, die z.B. im Rahmen der Studie von Wacker et al. (2006) zu beobachten waren. Drei mögliche Mechanismen wurden identifiziert und in einer Studie gegeneinander geprüft: (1) eine umgekehrt U-förmiges Dosis-Wirkungs-Modell, (2) individuelle Unterschiede in den Zeitverläufen von Substanzeffekten und (3) individuelle Unterschiede in der Responsivität auf prä- vs. postsynaptische Substanzeffekte. Um diese unterschiedlichen Mechanismen gegeneinander abwägen zu können, wurden 80 hoch vs. niedrig extravertierte, männliche Probanden in einer randomisierten, doppelblinden Versuchsanordnung einer von vier Substanzbedingungen zugeordnet (Placebo, 50, 200, 400 mg Sulpirid). Nach Einnahme der Substanzen wurde über einen Zeitraum von 4.5 Stunden das Ruhe-EEG stündlich abgeleitet. Neben der erfolgreichen Replikation der Befunde von Wacker et al. (2006) zeigten die Analysen, dass die zeit- und dosis-abhängigen Verläufe am besten mit einem Modell differentieller prä- vs. postsynaptischer Substanzeffekte erklärt werden. Insgesamt kann die vorliegende Dissertation eine Vielzahl unterstützender Belege für die Annahme einer dopaminerg-basierten agentischen Extraversion vorlegen sowie die posteriore vs. anteriore Theta-Aktivität als einen reliablen, dosis-sensitiven und direkten biologischen Indikator der Dopamin-D2-Aktivität validieren. Dieses einfache und ökonomisch zu erhebende Maß spiegelt – zumindest teilweise – die Funktionen der rostralen ACC generierten Theta-Aktivität wider und ist sowohl sensitiv für die prä- als auch die postsynaptischen Effekte von Sulpirid. Beispiele für die vielfältigen Implikationen und Anwendungen der Befunde werden diskutiert.

Bibliographie / References

  1. Anhang | Anhang C: Publikationsliste Buchbeiträge Peper, M., & Chavanon, M.-L. (2011). The neuropsychology of punishment. In H. Kury & E. Shea (Eds), Punitiveness: International Developments. Bochum: Universitätsverlag Brockmeyer.
  2. Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage, 11(5 Pt 1), 409-423.
  3. Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Annals of the New York Academy of Sciences, 935, 107-117.
  4. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49-100.
  5. Baddeley, A. D. (1998). The central executive: a concept and some misconceptions. Journal of the International Neuropsychological Society, 4(5), 523-526.
  6. Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17(21), 8528-8535.
  7. Vollm, B. A., de Araujo, I. E., Cowen, P. J., Rolls, E. T., Kringelbach, M. L., Smith, K. A., et al. (2004). Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology, 29(9), 1715-1722.
  8. Sharot, T., Riccardi, A. M., Raio, C. M., & Phelps, E. A. (2007). Neural mechanisms mediating optimism bias. Nature, 450(7166), 102-105.
  9. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59.
  10. Smith, E. E., & Jonides, J. (1997). Working memory: a view from neuroimaging. Cognitive Psychology, 33(1), 5-42.
  11. Aiken, L. S., & West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Thousand Oaks: Sage Publications.
  12. Munafo, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biological Psychiatry, 63(2), 197-206.
  13. Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry, 15(9), 918-927.
  14. Rapp, A. M., Wild, B., Erb, M., Rodden, F. A., Ruch, W., & Grodd, W. (2008). Trait cheerfulness modulates BOLD response in lateral cortical but not limbic brain areas- -a pilot fMRI study. Neuroscience Letters, 445(3), 242-245.
  15. State, trait and biochemical influences on human anterior cingulate function. Neuroimage, 34(4), 1766-1773.
  16. Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(6), 898-902.
  17. Verbeeck, W., Berk, M., Paiker, J., & Jersky, B. (2001). The prolactin response to sulpiride in major depression: the role of the D2 receptor in depression. European Neuropsychopharmacology, 11(3), 215-220.
  18. Zoli, M., Jansson, A., Sykova, E., Agnati, L. F., & Fuxe, K. (1999). Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends in Pharmacological Science, 20(4), 142-150.
  19. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509-517.
  20. O'Gorman, R. L., Kumari, V., Williams, S. C., Zelaya, F. O., Connor, S. E., Alsop, D. C., et al. (2006). Personality factors correlate with regional cerebral perfusion. Neuroimage, 31(2), 489-495.
  21. Smillie, L. D., Cooper, A. J., Proitsi, P., Powell, J. F., & Pickering, A. D. (2009). Variation in DRD2 dopamine gene predicts Extraverted personality. Neuroscience Letters, 468(3), 234-237.
  22. O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95-102.
  23. Kommentare Chavanon, M.-L., Stemmler, G., & Wacker, J. (2008). A cognitive- affective extension to reinforcement sensitivity. European Journal of Personality. Invited peer comment on Smillie, L. D. " What is reinforcement sensitivity? Neuroscience paradigms for approach-avoidance processes in personality " .
  24. Kemper, C.J., Leue, A., Wacker, J., Chavanon, M.-L., Hennighausen, E., & Stemmler, G. (2008). Agentic extraversion as a predictor of effort-related somatovisceral response. Biological Psychology, 78, 191-199.
  25. Wacker, J., & Stemmler, G. (2006). Agentic extraversion modulates the cardiovascular effects of the dopamine D2 agonist bromocriptine. Psychophysiology, 43(4), 372- 381.
  26. Chavanon, M.-L., Wacker, J., & Stemmer, G. (2009). Agentische Extraversion = Dopaminerge Extraversion? Hinweise zu Indikatoren und Mechanismen aus einer pharmakologischen EEG-Studie. In M. Schmitt, C. Altstötter-Gleich, A. Baumert, F. Dislich, C. Reither, N. Thomas, A. Zinkernagel (Eds.), Beiträge zur 10. Fachgrupentagung Differentielle Psychologie, Persönlichkeitspsychologie und Psychologische Diagnostik (p. 56). Lengerich: Pabst.
  27. Wiesbeck, G. A., Davids, E., Wodarz, N., Thome, J., Weijers, G., Jakob, F., et al. (1996). Alcohol withdrawal and dopamine receptor sensitivity after prolonged abstinence. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 20(7), 1171-1180.
  28. Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529-550.
  29. Chavanon, M.-L., Schlattmann, U., Wacker, J., Leue, A., & Stemmler, G. (2006). Annäherungs-Annäherungs-Konflikte in der frontalen Hemisphärenasymmetrie. In F. Lösel & D. Bender (Eds.), 45. Kongress der Deutschen Gesellschaft für Psychologie in Nürnberg (pp. 55). Lengerich: Pabst Science Publishers.
  30. Antidepressant action of sulpiride. Results of a placebo-controlled double-blind trial. Pharmacopsychiatry, 32(4), 127-135.
  31. Standish-Barry, H. M., Bouras, N., Bridges, P. K., & Watson, J. P. (1983). A randomized double blind group comparative study of sulpiride and amitriptyline in affective disorder. Psychopharmacology (Berl), 81(3), 258-260.
  32. Reuter, M., & Hennig, J. (2005). Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. Neuroreport, 16(10), 1135-1138.
  33. Tsai, S. J., Yu, Y. W., Chen, T. J., Chen, J. Y., Liou, Y. J., Chen, M. C., et al. (2003). Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neurosci Lett, 338(2), 123-126.
  34. Amin, Z., Constable, R. T., & Canli, T. (2004). Attentional bias for valenced stimuli as a function of personality in the dot-probe task. Journal of Research in Personality, 38, 15-23.
  35. Suslow, T., Kugel, H., Reber, H., Bauer, J., Dannlowski, U., Kersting, A., et al. (2010). Automatic brain response to facial emotion as a function of implicitly and explicitly measured extraversion. Neuroscience, 167(1), 111-123.
  36. Arnsten, A. F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Sciences, 2(11), 436-447.
  37. Arnsten, A. F. (1997). Catecholamine regulation of the prefrontal cortex. Journal of Psychopharmacology, 11(2), 151-162.
  38. Tan, H. Y., Chen, Q., Goldberg, T. E., Mattay, V. S., Meyer-Lindenberg, A., Weinberger, D. R., et al. (2007). Catechol-O-methyltransferase Val158Met modulation of prefrontal- parietal-striatal brain systems during arithmetic and temporal transformations in working memory. Journal of Neuroscience, 27(49), 13393-13401.
  39. Vergoni, A. V., Forgione, A., & Bertolini, A. (1995). Chronic administration of l-sulpiride at non-neuroleptic doses reduces the duration of immobility in experimental models of "depression-like" behavior. Psychopharmacology (Berl), 121(2), 279-281.
  40. Vaidya, J. G., Paradiso, S., Andreasen, N. C., Johnson, D. L., Boles Ponto, L. L., & Hichwa, R. D. (2007). Correlation between extraversion and regional cerebral blood flow in response to olfactory stimuli. American Journal of Psychiatry, 164(2), 339-341.
  41. Pizzagalli, D. A., Oakes, T. R., & Davidson, R. J. (2003). Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology, 40(6), 939-949.
  42. Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996), 947-950.
  43. Morrone-Strupinsky, J. V., & Depue, R. A. (2004). Differential relation of two distinct, film- induced positive emotional states to affiliative and agentic extraversion. Personality and Individual Differences, 36(5), 1109-1126.
  44. Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D. F., & Buchel, C. (2006). Dissociable systems for gain-and loss-related value predictions and errors of prediction in the human brain. Journal of Neuroscience, 26(37), 9530-9537.
  45. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53-83.
  46. Pickering, A. D., & Gray, J. A. (2001). Dopamine, appetitive reinforcement, and the neuropsychology of human learning: An individual differences approach. In A. Eliasz & A. Angleitner (Eds.), Advances in research on temperament (pp. 113-149). Lengerich: Pabst.
  47. Sesack, S. R., Hawrylak, V. A., Matus, C., Guido, M. A., & Levey, A. I. (1998). Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. Journal of Neuroscience, 18(7), 2697-2708.
  48. Netter, P. (2006). Dopamine challenge tests as an indicator of psychological traits. Human Psychopharmacology, 21(2), 91-99.
  49. Persson, M. L., Wasserman, D., Geijer, T., Frisch, A., Rockah, R., Michaelovsky, E., et al. (2000). Dopamine D4 receptor gene polymorphism and personality traits in healthy volunteers. European Archives of Psychiatry and Clinical Neuroscience, 250(4), 203- 206.
  50. Nagano-Saito, A., Liu, J., Doyon, J., & Dagher, A. (2009). Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neuroscience Letters, 458(1), 1-5.
  51. Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: from structure to function. Physiological Reviews, 78(1), 189-225.
  52. Rammsayer, T. H. (2000). Dopaminerge Mechanismen und Extraversion Zeitschrift fuer Differentielle und Diagnostische Psychologie, 21(3), 218-225.
  53. Schinka, J. A., Letsch, E. A., & Crawford, F. C. (2002). DRD4 and novelty seeking: results of meta-analyses. American Journal of Medical Genetics Part A, 114(6), 643-648.
  54. Schacter, D. L. (1977). Eeg Theta Waves and Psychological Phenomena -Review and Analysis. Biological Psychology, 5(1), 47-82.
  55. Pizzagalli, D. A. (2007). Electroencephalography and high-density electrophysiological source localization. In J. T. Cacioppo, L. G. Tassinary & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 56-84). NY: Cambridge University Press.
  56. Chavanon, M.-L., Wacker, J., Leue, A., & Stemmler, G. (2007). Evidence for a dopaminergic link between working memory and agentic extraversion: An analysis for load-related changes in EEG alpha 1 activity. Biological Psychology, 74, 46-59.
  57. Tellegen, A., & Waller, N. G. (2008). Exploring personality through test construction: Development of the Multidimensional Personality Questionnaire. In G. J. Boyle, G. Matthews & D. H. Saklofske (Eds.), The Sage Handbook of Personality and Assessment (Vol. 2, pp. 161-292). London: Sage.
  58. Rammsayer, T. H. (2004). Extraversion and the dopamine hypothesis. In R. M. Stelmack (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 409-427). Amsterdam: Elsevier.
  59. Morrone, J. V., Depue, R. A., Scherer, A. J., & White, T. L. (2000). Film-induced incentive motivation and positive activation in relation to agentic and affiliative components of extraversion. Personality and Individual Differences, 29(2), 199-216.
  60. Chavanon, M.-L., Wacker, J., Leue, A., & Stemmler, G. (2007). Frontal asymmetry during approach-approach conflict. In J.Hennig, M. Reuter, C. Montag, & P. Netter (Eds.), 13th Biennial Meeting of the International Society for the Study of Individual Differences (ISSID) Kongress der Deutschen Gesellschaft für Psychologie in Nürnberg (pp. 67-68).
  61. Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32.
  62. Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 878-882.
  63. Strobel, A., Brocke, B., & Ebstein, R. P. (2000). Interaction effects of monoamine-relevant genetic polymorphisms with traits of the TPQ / Interaktionseffekte monoamin- relevanter genetischer Polymorphismen mit Traits des TPQ. Zeitschrift fur Differentielle und Diagnostische Psychologie, 21(3), 191-199.
  64. Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10(3), 376-384.
  65. Wacker, J., Chavanon, M.-L., & Stemmler, G. (2006). Investigating the dopaminergic basis of extraversion in humans: A multilevel approach. Journal of Personality and Social Psychology., 91(1), 171-187.
  66. Wacker, J., Chavanon, M.-L., Leue, A., & Stemmler, G. (2008). Is running away right? New evidence for the BIS/BAS model of anterior asymmetry. Emotion, 8, 232-249.
  67. Wacker, J., Chavanon, M. L., Leue, A., & Stemmler, G. (2008). Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry. Emotion, 8(2), 232- 249.
  68. Allen, J. J. B., Coan, J. A., & Nazarian, M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology, 67(1-2), 183-218.
  69. Tagungs- beiträge (Auswahl publizierter Abstracts) Chavanon, M.-L. & Stemmler, G. (2006). Is there a dopaminergic link between working memory and agentic extraversion? Journal of Psychophysiology, 20(2), 113-114.
  70. Strobel, A., Spinath, F. M., Angleitner, A., Riemann, R., & Lesch, K. P. (2003). Lack of association between polymorphisms of the dopamine D4 receptor gene and personality. Neuropsychobiology, 47(1), 52-56.
  71. Chavanon, M.-L., Wacker, J., & Stemmler, G. (submitted). Mechanisms of paradoxical drug effects: Dose-and time dependent effects of the selective D2 receptor blocker Sulpiride on posterior vs. anterior theta activity in agentic extraversion.
  72. Nagano-Saito, A., Arahata, Y., Abe, Y., Washimi, Y., Yamada, T., Nakamura, A., et al. (2002). Mesolimbic dopaminergic system may play important roles in Parkinson's disease. Journal of Nuclear Medicine, 43(5), 244P-244P.
  73. Arnsten, A. F., & Li, B. M. (2005). Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57(11), 1377-1384.
  74. Wiesbeck, G. A., Mauerer, C., Thome, J., Jakob, F., & Boening, J. (1995). Neuroendocrine support for a relationship between ''novelty seeking'' and dopaminergic function in alcohol-dependent men. Psychoneuroendocrinology, 20(7), 755-761.
  75. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta- analysis. Cognitive, Affective, and Behavioral Neuroscience, 3(4), 255-274.
  76. van der Post, J., de Waal, P. P., de Kam, M. L., Cohen, A. F., & van Gerven, J. M. (2004). No evidence of the usefulness of eye blinking as a marker for central dopaminergic activity. Journal Psychopharmacology, 18(1), 109-114.
  77. Leue, A., Chavanon, M.-L., Wacker, J., & Stemmler, G. (2009). On the differentiation of N2-components in an appetitive choice task: Evidence for the revised Reinforcement Sensitivity Theory. Psychophysiology, 46, 1244-1257.
  78. Morrone Strupinsky, J. V., & Lane, R. D. (2007). Parsing positive emotion in relation to agentic and affiliative components of extraversion. Personality and Individual Differences, 42(7), 1267-1278.
  79. Reuter, M., Stark, R., Hennig, J., Walter, B., Kirsch, P., Schienle, A., et al. (2004). Personality and emotion: Test of Gray's personality theory by means of an fMRI study. Behavioral Neuroscience, 118(3), 462-469.
  80. Bates, T. C., & Rock, A. (2004). Personality and information processing speed: Independent influences on intelligent performance. Intelligence, 32(1), 33-46.
  81. Pervin, L. A., & Cervone, D. (2010). Personality -Theory and Research (11th ed.). Hoboken, NJ: Wiley & Sons.
  82. Schultz, W. (1998). Predictive reward signals of dopamine neurons. Journal of Neurophysiology, 80, 1-27.
  83. Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8(3), 204- 210.
  84. Schmitz, Y., Benoit-Marand, M., Gonon, F., & Sulzer, D. (2003). Presynaptic regulation of dopaminergic neurotransmission. Journal of Neurochemistry, 87(2), 273-289.
  85. Anhang | Anhang C: Publikationsliste Anhang C: Publikationsliste Original- arbeiten (peer- reviewed)
  86. Wacker, J., Chavanon, M. L., & Stemmler, G. (2010). Resting EEG signatures of agentic extraversion: New results and meta-analytic integration. Journal of Research in Personality, 44, 167-179.
  87. Wacker, J., & Gatt, J. M. (2010). Resting posterior versus frontal delta/theta EEG activity is associated with extraversion and the COMT VAL(158)MET polymorphism. Neuroscience Letters, 478(2), 88-92.
  88. Chavanon, M. L., Wacker, J., & Stemmler, G. (2011). Rostral anterior cingulate activity generates posterior versus anterior theta activity linked to agentic extraversion. Cognitive, Affective, and Behavioral Neuroscience, 11(2), 172-185.
  89. Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41(3), 473-487.
  90. Wacker, J., Heldmann, M., & Stemmler, G. (2003). Separating emotion and motivational direction in fear and anger: effects on frontal asymmetry. Emotion, 3(2), 167-193.
  91. Wacker, J., Reuter, M., Hennig, J., & Stemmler, G. (2005). Sexually dimorphic link between dopamine D2 receptor gene and neuroticism-anxiety. Neuroreport, 16(6), 611-614.
  92. Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Braus, D. F., & Buchel, C. (2007). Subregions of the ventral striatum show preferential coding of reward magnitude and probability. Neuroimage, 38(3), 557-563.
  93. Wagstaff, A. J., Fitton, A., & Benfield, P. (1994). Sulpiride. A review of its pharmacodynamic and pharmacokinteic properties, and therapeutic efficacy in schizophrenia. CNS Drugs, 2(4), 313-333.
  94. Wallace, D. L., Vytlacil, J. J., Nomura, E. M., Gibbs, S. E., & D'Esposito, M. (2011). The dopamine agonist bromocriptine differentially affects fronto-striatal functional connectivity during working memory. Frontiers in Human Neuroscience, 5, 32.
  95. Pickering, A. D., & Corr, P. J. (2008). The neuroscience of personality. In G. Boyle, G. Matthews & D. H. Saklofske (Eds.), Handbook of Personality Testing and Theory (pp. 239-256). London: Sage.
  96. Smillie, L. D., Pickering, A. D., & Jackson, C. J. (2006). The new Reinforcement Sensitivity Theory: Implications for personality measurement. Personality and Social Psychology Review, 10(4), 320-335.
  97. Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74(1), 1-58.
  98. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44-54.
  99. Ortet, G., Ibanez, M. I., Llerena, A., & Torrubia, R. (2002). The underlying traits of the Karolinska Scales of Personality (KSP). European Journal of Psychological Assessment, 18(2), 139-148.
  100. Miyake, A., & Shah, P. (1999). Toward Unified Theorie of Working Memory: Emerging general Consensus, Unresolved Theoretical Issues, and Future Research Directions. In A. Miyake & P. Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 442-481). Cambridge: Cambridge University Press.
  101. Wacker, J., Chavanon, M. L., Leue, A., & Stemmler, G. (2010). Trait BIS predicts alpha asymmetry and P300 in a go/no-go task. European Journal of Personality, 24(2), 85-105.
  102. Allport, G. W. (1966). Traits revisited. American Psychologist, 21, 1-10.
  103. Wahlstrom, D., White, T., Hooper, C. J., Vrshek-Schallhorn, S., Oetting, W. S., Brott, M. J., et al. (2007). Variations in the catechol O-methyltransferase polymorphism and prefrontally guided behaviors in adolescents. Biological Psychiatry, 61(5), 626-632.
  104. Zuckerman, M. (1992). What is a basic factor and which factors are basic? Turtles all the way down. Personality and Individual Differences, 13(6), 675-681
  105. Smillie, L. D. (2008). What is reinforcement sensitivity? Neuroscience paradigms for approach-avoidance process theories of personality. European Journal of Personality, Vol.22(5), pp.
  106. Smith, E. E., & Jonides, J. (1995). Working memory in humans: Neuropsychological evidence. In M. S. Gazzaniga (Ed.), The cognitive neurosciencees (pp. 1009-1020).
  107. Baddeley, A. D., & Logie, R. H. (1999). Working Memory: The Multiple-Components Model. In A. Miyake & P. Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 28-61). Cambridge: Cambridge University Press.
  108. Schwarting, R. K. W. (1997). Zur Neurochemie des Verhaltens: Dopamin und Motivation. Psychologische Rundschau, 48, 211-223.
  109. Strobel, A. (2005). Molekulargenetische Aspekte dopaminerger Modulation der Responsivität gegenüber Neuheit. Technische Universität Dresden, Dresden.
  110. Chavanon M.-L., Leue A., Kemper C., & Stemmler, G. (2007). Agentic extraversion and mobilization of effort: Effects on autonomic activation components. Psychophysiology, 44, S13.
  111. Beaver, J. D., Lawrence, A. D., Passamonti, L., & Calder, A. J. (2008). Appetitive motivation predicts the neural response to facial signals of aggression. Journal of Neuropsychopharmacology, 7(3), 219-223.
  112. Pickering, A. D., & Gray, J. A. (1999). The neuroscience of personality. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 277-299). New York: Guilford.
  113. Stenberg, G. (1990). Regional patterns of cortical blood flow distinguish extraverts from introverts. Personality and Individual Differences, 11(7), 663-673.
  114. Stenberg, G., Wendt, P. E., & Risberg, J. (1993). Regional cerebral blood flow and extraversion. Personality and individual Differences, 15(5), 547-554.
  115. Mobbs, D., Hagan, C. C., Azim, E., Menon, V., & Reiss, A. L. (2005). Personality predicts activity in reward and emotional regions associated with humor. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16502- 16506.
  116. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 12061-12068.
  117. Tomer, R., Goldstein, R. Z., Wang, G. J., Wong, C., & Volkow, N. D. (2008). Incentive motivation is associated with striatal dopamine asymmetry. Biological Psychology, 77, 98-101.
  118. Wahlstrom, D., Collins, P., White, T., & Luciana, M. (2010). Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain & Cognition, 72(1), 146-159.
  119. Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology, 36(1), 183-206.
  120. Volkow, N. D., Tomasi, D., Wang, G. J., Fowler, J. S., Telang, F., Goldstein, R. Z., et al. (2011). Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Molecular Psychiatry.
  121. Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 876-882.
  122. Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Dissociation of human mid- dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 873-877.
  123. Riemann, R., & Spinath, F. M. (2005). Genetik der Persönlichkeit. In J. Hennig & P. Netter (Eds.), Biopsychologische Grundlagen der Persönlichkeit (pp. 539-628). Heidelberg: Spektrum-Verlag.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten