Publikationsserver der Universitätsbibliothek Marburg

Titel:Vergleich des 1 molaren Gadobutrol (Gadovist®) und des 0,5 molaren Gadobenat-Dimeglumin (MultiHance®) bei der kontrastmittelverstärkten Magnetresonanzangiographie der unteren Extremität
Autor:Achenbach, Marina
Weitere Beteiligte: Heverhagen, Johannes (Prof. Dr. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0461
URN: urn:nbn:de:hebis:04-z2011-04614
DOI: https://doi.org/10.17192/z2011.0461
DDC: Medizin
Titel (trans.):Comparison of 1 molar Gadobutrol (Gadovist®) and 0,5 molar Gadobenate-Dimeglumine (MultiHance®) in Contrast-Enhanced Run-Off Magnetic Resonance Angiography of the Lower Extremities
Publikationsdatum:2011-08-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
run-off MRA, Gadobutrol, Gadobenate Dimeglumine, Kontrastmittel, Gadobenat-Dimeglumin, Magnetresonanzangiographie, Nichtionisches Kontrastmittel, Gadobutrol, lower extremities, Periphere arterielle Verschlusskrankheit

Zusammenfassung:
In der vorliegenden Studie sollte das 0,5 molare MR-Kontrastmittel Gadobenat-Dimeglumin in halber Dosierung mit dem 1 molaren Gadobutrol in Standarddosierung bei der kontrastmittelverstärkten Magnetresonanzangiographie (CE-MRA) der unteren Extremität verglichen werden. Hierzu wurden jeweils 37 CE-MRAs mit 0,1 mmol/kg KG Gadobutrol und 0,05 mmol/kg KG Gadobenat-Dimeglumin bei 1,5 Tesla von der infrarenalen Aorta bis zu den Knöchelarterien retrospektiv untersucht. Zwei unabhängige, verblindete Untersucher beurteilten das Auftreten signifikanter (> 70%) und nicht-signifikanter (≤ 70%) Stenosen sowie die subjektive Bildqualität und die venöse Überlagerung der CE-MRAs. Von einem dritten Untersucher wurde die Signalintensität, das Signal-Rausch-Verhältnis (SNR) und das Kontrast-Rausch-Verhältnis (CNR) in den Segmenten von der infrarenalen Aorta bis zur A. poplitea bestimmt. Die Übereinstimmung zwischen den Untersuchern bei der Beurteilung arterieller Stenosen war sowohl für Gadobutrol (kappa = 0,547) als auch für Gadobenat-Dimeglumin (kappa = 0,524) deutlich. Bezüglich der subjektiven Bildqualität zeigte sich für Untersucher 1 kein signifikanter Unterschied (p = 0,21). Für Untersucher 2 ergab sich eine signifikant bessere Bildqualität mit Gadobenat-Dimeglumin (p < 0,05). Eine venöse Überlagerung trat mit beiden Kontrastmitteln ungefähr gleich häufig auf (p = 0,132 und p= 0,06). Eine hochgradige venöse Überlagerung im Bereich des Unterschenkels führte jedoch bei beiden Untersuchern mit Gadobutrol (in 1,4 und 2,6% der beurteilbaren Segmente) deutlich häufiger zu einer nicht-diagnostischen Bildqualität als mit Gadobenat-Dimeglumin (in 0,4 und 0,3 %). Hinsichtlich der Signalintensität (p = 0,28), SNR (p = 0,18) oder CNR (p = 0,18) bestand zwischen den beiden Kontrastmitteln kein signifikanter Unterschied. Durch die Verwendung von Gadobenat-Dimeglumin kann die Gadoliniumdosis bei der CE-MRA der unteren Extremität ohne Verlust an Bildqualität oder Signalintensität, SNR und CNR halbiert werden. Gadobenat-Dimeglumin sollte außerdem aufgrund der geringeren Rate an nicht-diagnostischer Bildqualität gegenüber Gadobutrol bevorzugt verwendet werden

Bibliographie / References

  1. Szucs-Farkas,Z., Froehlich,J.M., Ulrich,M., Wuersten,H.U., Guignard,D., Wyss,S., and Braunschweig,M. (2008). 1.0-M gadobutrol versus 0.5-M gadoterate for peripheral magnetic resonance angiography: a prospective randomized controlled clinical trial. J.
  2. Maki,J.H., Prince,M.R., Londy,F.J., and Chenevert,T.L. (1996). The effects of time varying intravascular signal intensity and k-space acquisition order on three- dimensional MR angiography image quality. J. Magn Reson. Imaging 6, 642-651.
  3. Sun,Z. (2006). Diagnostic accuracy of multislice CT angiography in peripheral arterial disease. J. Vasc. Interv. Radiol. 17, 1915-1921.
  4. Pediconi,F., Fraioli,F., Catalano,C., Napoli,A., Danti,M., Francone,M., Venditti,F., Nardis,P., and Passariello,R. (2003). Gadobenate dimeglumine (Gd-DTPA) vs gadopentetate dimeglumine (Gd-BOPTA) for contrast-enhanced magnetic resonance angiography (MRA): improvement in intravascular signal intensity and contrast to noise ratio. Radiol. Med. 106, 87-93.
  5. Vasbinder,G.B., Nelemans,P.J., Kessels,A.G., Kroon,A.A., Maki,J.H., Leiner,T., Beek,F.J., Korst,M.B., Flobbe,K., de Haan,M.W., van Zwam,W.H., Postma,C.T., Hunink,M.G., de Leeuw,P.W., and van Engelshoven,J.M. (2004). Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann. Intern. Med. 141, 674-682.
  6. (2001). 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose- independent effect on image quality of pelvic three-dimensional MR-angiography. J.
  7. Abb. 10: Relative Häufigkeiten der Bildqualitäten pro Gefäßetage (FOV)……………36
  8. Abb. 11: Boxplotdiagramme für die Grade der subjektiven Bildqualität………………38
  9. Abb. 12: Relative Häufigkeiten der venös überlagerten Gefäßsegmente im Bereich des Ober-und Unterschenkels……………………………………………………………...40
  10. Abb. 13: Boxplotdiagramm für die venöse Überlagerung im Bereich des Unterschenkels…………………………………………………………….……………42
  11. Abb. 14: Graphische Darstellung der mittleren Signalintensität (SI) für die einzelnen Gefäßsegmente……………………………………………………………………..…..44
  12. Abb. 15: Graphische Darstellung der mittleren SNR der einzelnen Gefäßsegmente…..45
  13. Abb. 6: Nicht beurteilbare Gefäßsegmente bei Untersucher 1…………………………31
  14. Abb. 8: Relative Häufigkeit von signifikanten Stenosen pro Gefäßsegment…………..33
  15. Abb. 9: Relative Häufigkeit von nicht-signifikanten Stenosen pro Gefäßsegment…….34
  16. Akgun,H., Gonlusen,G., Cartwright,J., Jr., Suki,W.N., and Truong,L.D. (2006). Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch. Pathol. Lab Med. 130, 1354-1357.
  17. Laghi,A., Paolantonio,P., Rengo,M., and Lucchesi,P. (2010). Artifacts in MR- Angiography. In MR-Angiography of the body -Technique and Applications, E.Neri, M.Cosottini, and D.Caramella, eds. Springer), pp. 27-33.
  18. Knopp,M.V., Schoenberg,S.O., Rehm,C., Floemer,F., von Tengg-Kobligk,H., Bock,M., and Hentrich,H.R. (2002). Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol. 37, 706-715.
  19. Steffens,J.C., Schafer,F.K., Oberscheid,B., Link,J., Jahnke,T., Heller,M., and Brossmann,J. (2003). Bolus-chasing contrast-enhanced 3D MRA of the lower extremity. Comparison with intraarterial DSA. Acta Radiol. 44, 185-192.
  20. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 40, 715-724.
  21. Winterer,J.T., Schaefer,O., Uhrmeister,P., Zimmermann-Paul,G., Lehnhardt,S., Altehoefer,C., and Laubenberger,J. (2002). Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur. J. Radiol. 41, 153-160.
  22. Knopp,M.V., Giesel,F.L., von Tengg-Kobligk,H., Radeleff,J., Requardt,M., Kirchin,M.A., and Hentrich,H.R. (2003). Contrast-enhanced MR angiography of the run-off vasculature: intraindividual comparison of gadobenate dimeglumine with gadopentetate dimeglumine. J. Magn Reson. Imaging 17, 694-702.
  23. Prince,M.R., Chabra,S.G., Watts,R., Chen,C.Z., Winchester,P.A., Khilnani,N.M., Trost,D., Bush,H.A., Kent,K.C., and Wang,Y. (2002). Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224, 55-61.
  24. [CTA and MRA in peripheral arterial disease--is DSA out?]. Radiologe 46, 941- 947.
  25. Boyden,T.F. and Gurm,H.S. (2008). Does gadolinium-based angiography protect against contrast-induced nephropathy?: a systematic review of the literature. Catheter. Cardiovasc. Interv. 71, 687-693.
  26. Tombach,B., Benner,T., Reimer,P., Schuierer,G., Fallenberg,E.M., Geens,V., Wels,T., and Sorensen,A.G. (2003). Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226, 880-888.
  27. Abb. 1: Durchschnittliche diagnostische Genauigkeit der bildgebenden Verfahren für die Detektion von > 50%igen arteriellen Stenosen und Verschlüssen im Vergleich zur DSA...……4 Abb. 2: Strukturformel von Gadobutrol…………………………………………….….12
  28. Bellin,M.F. and Van Der Molen,A.J. (2008). Extracellular gadolinium-based contrast media: an overview. Eur. J. Radiol. 66, 160-167.
  29. Morcos,S.K. (2008). Extracellular gadolinium contrast agents: differences in stability.
  30. Klessen,C., Hein,P.A., Huppertz,A., Voth,M., Wagner,M., Elgeti,T., Kroll,H., Hamm,B., Taupitz,M., and Asbach,P. (2007). First-pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: comparison to gadopentetate dimeglumine. Invest Radiol. 42, 659-664.
  31. Vanzulli,A. (2010). Flow-Based MRA. In MR Angiography of the body-Technique and applications, E.Neri, M.Cosottini, and D.Caramella, eds. Springer), p. 4.
  32. Kroencke,T.J., Wasser,M.N., Pattynama,P.M., Barentsz,J.O., Grabbe,E., Marchal,G., Knopp,M.V., Schneider,G., Bonomo,L., Pennell,D.J., Del,M.A., Hentrich,H.R., Dapra,M., Kirchin,M.A., Spinazzi,A., Taupitz,M., and Hamm,B. (2002). Gadobenate dimeglumine-enhanced MR angiography of the abdominal aorta and renal arteries. AJR Am. J. Roentgenol. 179, 1573-1582.
  33. Goyen,M. and Debatin,J.F. (2004). Gadopentetate dimeglumine-enhanced three- dimensional MR-angiography: dosing, safety, and efficacy. J. Magn Reson. Imaging 19, 261-273.
  34. Griswold,M.A., Jakob,P.M., Heidemann,R.M., Nittka,M., Jellus,V., Wang,J., Kiefer,B., and Haase,A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson. Med. 47, 1202-1210.
  35. Schoenberg,S.O., Rieger,J., Weber,C.H., Michaely,H.J., Waggershauser,T., Ittrich,C., Dietrich,O., and Reiser,M.F. (2005). High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235, 687-698.
  36. Nikolaou,K., Kramer,H., Grosse,C., Clevert,D., Dietrich,O., Hartmann,M., Chamberlin,P., Assmann,S., Reiser,M.F., and Schoenberg,S.O. (2006). High-spatial- resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241, 861-872.
  37. Abb. 4: Histologisch gesicherte Fälle von NSF nach der Exposition gegenüber gadoliniumhaltigen Kontrastmittel bis Februar 2008…………………………………..16
  38. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 45 Suppl S, S5-67.
  39. Schoenberg,S.O., Knopp,M.V., Londy,F., Krishnan,S., Zuna,I., Lang,N., Essig,M., Hawighorst,H., Maki,J.H., Stafford-Johnson,D., Kallinowski,F., Chenevert,T.L., and Prince,M.R. (2002b). Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J. Am. Soc. Nephrol. 13, 158-169.
  40. Pesaresi,I. and Cosottini,M. (2010). MR Angiography Contrast Agents. In MR Angiography of the Body, E.Neri, M.Cosottini, and D.Caramella, eds. Springer), pp. 7- 16.
  41. Goyen,M., Edelman,M., Perreault,P., O'Riordan,E., Bertoni,H., Taylor,J., Siragusa,D., Sharafuddin,M., Mohler,E.R., III, Breger,R., Yucel,E.K., Shamsi,K., and Weisskoff,R.M. (2005). MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325.
  42. MR angiography of the pedal arteries with gadobenate dimeglumine, a contrast agent with increased relaxivity, and comparison with selective intraarterial DSA. J.
  43. MRA of abdominal vessels: technical advances. Eur. Radiol. 16, 1637-1650.
  44. Schoenberg,S.O., Essig,M., Hallscheidt,P., Sharafuddin,M.J., Stolpen,A.H., Knopp,M.V., and Yuh,W.T. (2002a). Multiphase magnetic resonance angiography of the abdominal and pelvic arteries: results of a bicenter multireader analysis. Invest Radiol. 37, 20-28.
  45. von Tengg-Kobligk,H., Floemer,F., and Knopp,M.V. (2003). [Multiphasic MR angiography as an intra-individual comparison between the contrast agents Gd-DTPA, Gd-BOPTA, and Gd-BT-DO3A]. Radiologe 43, 171-178.
  46. Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR Am. J. Roentgenol. 188, 529-539.
  47. Goyen,M., Herborn,C.U., Lauenstein,T.C., Barkhausen,J., Veit,P., Bosk,S., Debatin,J., and Ruehm,S.G. (2002). Optimization of contrast dosage for gadobenate dimeglumine- enhanced high-resolution whole-body 3D magnetic resonance angiography. Invest Radiol. 37, 263-268.
  48. Optimization of contrast timing for breath-hold three-dimensional MR angiography. J.
  49. Pelvic and lower extremity arterial imaging: diagnostic performance of three- dimensional contrast-enhanced MR angiography. AJR Am. J. Roentgenol. 174, 1127- 1135.
  50. Minar,E. (2007). Peripheral arterial occlusive disease. Vasa 36, 155-164.
  51. McCauley,T.R., Monib,A., Dickey,K.W., Clemett,J., Meier,G.H., Egglin,T.K., Gusberg,R.J., Rosenblatt,M., and Pollak,J.S. (1994). Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology 192, 351- 357.
  52. Prospective blinded evaluation of Gd-. Radiology 227, 261-269.
  53. Jones,D.N. (1997). Recommended standards for reports dealing with lower extremity ischemia: revised version. J. Vasc. Surg. 26, 517-538.
  54. Schick,F. (2006). Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2,
  55. Renal time-resolved MR angiography: quantitative comparison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. Radiology 220, 484- 488.
  56. Ubbink,D.T. and Vermeulen,H. (2005). Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane. Database. Syst. Rev. CD004001.
  57. Abb. 3: Strukturformel von Gadobenat-Dimeglumin………………………………… 13
  58. Hughes,J.D. (2005). The limitations of magnetic resonance angiography in the diagnosis of renal artery stenosis: comparative analysis with conventional arteriography. J. Vasc.
  59. Attenberger,U.I., Michaely,H.J., Wintersperger,B.J., Sourbron,S.P., Lodemann,K.P., Reiser,M.F., and Schoenberg,S.O. (2008). Three-dimensional contrast-enhanced magnetic-resonance angiography of the renal arteries: interindividual comparison of 0.2
  60. Korosec,F.R., Frayne,R., Grist,T.M., and Mistretta,C.A. (1996). Time-resolved contrast-enhanced 3D MR angiography. Magn Reson. Med. 36, 345-351.
  61. Time-resolved contrast enhanced magnetic resonance angiography of the head and neck at 3.0 tesla: initial results. Invest Radiol. 41, 116-124.
  62. Abraham,J.L. and Thakral,C. (2008). Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur. J. Radiol. 66, 200-207.
  63. Goyen,M., Herborn,C.U., Vogt,F.M., Kroger,K., Verhagen,R., Yang,F., Bosk,S., Debatin,J.F., and Ruehm,S.G. (2003). Using a 1 M Gd-chelate (gadobutrol) for total- body three-dimensional MR angiography: preliminary experience. J. Magn Reson. Imaging 17, 565-571.
  64. Tombach,B. and Heindel,W. (2002). Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur. Radiol. 12, 1550-1556.
  65. Ruehm,S.G. (2004). Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233, 913-920.
  66. Assen,H.C., de,R.A., Vanderschoot,J., and Reiber,J.H. (2000). Vessel diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries. Magn Reson. Imaging 18, 13-22.
  67. Meaney,J.F. (2003). Magnetic resonance angiography of the peripheral arteries: current status. Eur. Radiol. 13, 836-852.
  68. Seeger,A., Kramer,U., Fenchel,M., Grimm,F., Bretschneider,C., Doring,J., Klumpp,B., Tepe,G., Rittig,K., Seidensticker,P.R., Claussen,C.D., and Miller,S. (2008). Comparison between a linear versus a macrocyclic contrast agent for whole body MR angiography in a clinical routine setting. J. Cardiovasc. Magn Reson. 10, 63.
  69. Bayrak,I.K., Ozmen,Z., Nural,M.S., Danaci,M., and Diren,B. (2008). A comparison of low-dose and normal-dose gadobutrol in MR renography and renal angiography.
  70. Josephs,S.C., Rowley,H.A., and Rubin,G.D. (2008). Atherosclerotic Peripheral Vascular Disease Symposium II: vascular magnetic resonance and computed tomographic imaging. Circulation 118, 2837-2844.
  71. Kashyap,V.S., Pavkov,M.L., Bishop,P.D., Nassoiy,S.P., Eagleton,M.J., Clair,D.G., and Ouriel,K. (2008). Angiography underestimates peripheral atherosclerosis: lumenography revisited. J. Endovasc. Ther. 15, 117-125.
  72. Bartorelli,A.L. and Marenzi,G. (2008). Contrast-induced nephropathy. J. Interv.
  73. Bellin,M.F. (2006). MR contrast agents, the old and the new. Eur. J. Radiol. 60, 314- 323.
  74. Thomsen,H.S. and Marckmann,P. (2008). Extracellular Gd-CA: differences in prevalence of NSF. Eur. J. Radiol. 66, 180-183.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten