Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation der zellulären Adhäsion von Saccharomyces cerevisiae durch pH und den Rim101-Signalweg
Autor:Birke, Raphael
Weitere Beteiligte: Mösch, Hans-Ulrich (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0118
URN: urn:nbn:de:hebis:04-z2011-01183
DOI: https://doi.org/10.17192/z2011.0118
DDC: Biowissenschaften, Biologie
Titel (trans.):Regulation of cellular adhesion of Saccharomyces cerevisiae by pH and the Rim101 signaling pathway
Publikationsdatum:2011-06-30
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Rim101-Signalweg, cellular adhesion, pH, Adhäsion, Saccharomyces cerevisiae, Saccharomyces cerevisiae, zelluläre Adhäsion, adhesion, Adhäsion, Saccharomyces cerevisiae, pH, Rim101 signaling pathway

Zusammenfassung:
Die Steuerung der zellulären Adhäsion nimmt in vielen Mikroorganismen eine bedeutende Rolle bei der Kontaktaufnahme mit verschiedensten Umweltstandorten ein. Auch die Sprosshefe Saccharomyces cerevisiae ist in der Lage, ihre adhäsiven Eigenschaften an die Umweltbedingungen anzupassen. Hierzu verfügt S. cerevisiae über mehrere Zelloberflächen-Glycoproteine, die Flokkuline, die zur Familie der pilzlichen GPI-verankerten Adhäsine gehören. Ein zentrales Flokkulin ist Flo11, das Adhäsion an Agar- und Plastikoberflächen ermöglicht. Die Expression des FLO11-Gens wird über einen ungewöhnlich großen Promotor durch zahlreiche Signalwege als Antwort auf verschiedene Umweltstimuli komplex reguliert. In der vorliegenden Arbeit wurde die Regulation der Flo11-vermittelten Adhäsion durch den äußeren pH im Detail untersucht. Im Zentrum stand dabei die Rolle des Rim101-Signalwegs, der bei Pilzen stark konserviert ist und für die pH-abhängige Regulation verschiedener zellulärer Prozesse verantwortlich ist. Es konnte gezeigt werden, dass der Rim101-Signalweg in S. cerevisiae für die Flo11-abhängige Adhäsion in saurem und neutralem Milieu wichtig ist. Dabei reguliert der transkriptionelle Repressor Rim101 die FLO11-Expression indirekt über die Steuerung der Gene für die Transkriptions-repressoren Nrg1, Nrg2 und Smp1. Hierfür konnten mehrere DNA-Elemente im FLO11-Promotor identifiziert werden, die durch Nrg1 und Nrg2 in vitro gebunden und in vivo reguliert werden. Weiterführende genomweite Transkriptomanalysen ergaben, dass FLO11 zu einer großen Gruppe von Genen gehört, die beim Übergang von neutralem zu alkalischem pH stark reguliert werden. Es zeigte sich, dass die FLO11-Expression und die Flo11-abhängige Adhäsion in alkalischem Milieu stark unterdrückt werden. Dabei erfolgt die Reduktion der FLO11-Expression unabhängig vom Rim101-Signalweg und wird über ein unbekanntes Regulationssystem vermittelt. Zusätzlich deuten zellbiologische Analysen darauf hin, dass eine Veränderung der Zelloberfläche, möglicherweise hervorgerufen durch eine direkte Inaktivierung von Flo11, Ursache für den ausgeprägten Adhäsionsverlust unter alkalischen pH-Bedingungen ist.

Bibliographie / References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685
  2. Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci U S A 98: 3056-3061
  3. Gimeno CJ, Fink GR (1992) The logic of cell division in the life cycle of yeast. Science 257: 626
  4. Zhou H, Winston F (2001) NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet 2
  5. Peñalva MA, Arst HN (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66
  6. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133-163
  7. Pan X, Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22: 3981-3993
  8. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277: 31079-31088
  9. Gupta SK, Kececioglu JD, Schaffer AA (1995) Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J Comput Biol 2: 459-472
  10. Parle JN (1957) Yeasts isolated from the mammalian alimentary tract. J Gen Microbiol 17: 363-367
  11. Hoyer LL, Payne TL, Hecht JE (1998) Identification of Candida albicans ALS2 and ALS4 and localization of als proteins to the fungal cell surface. J Bacteriol 180: 5334-5343
  12. Zhu C, Byers K, McCord RP, Shi Z, Berger M, Newburger D, Saulrieta K, Smith Z, Shah M, Radhakrishnan M, Philippakis A, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, Bulyk M (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19: 556-566
  13. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537
  14. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135: 714-725
  15. Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007-1015
  16. Kang S, Choi H (2005) Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf B Biointerfaces 46: 70-77
  17. Filler S (2006) Candida-host cell receptor-ligand interactions. Curr Opin Microbiol 9: 333-339
  18. Halme A, Bumgarner S, Styles C, Fink G (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405-415
  19. Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97: 5984-5988
  20. Serrano R, Martin H, Casamayor A, Ariño J (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281: 39785-39795
  21. Mösch HU, Kubler E, Krappmann S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10: 1325-1335
  22. Morris R, O'Connor T, Wyrick J (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26: 168-174
  23. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32: 5539-5545
  24. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155: 268-278
  25. Stathopoulos AM, Cyert MS (1997) Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11: 3432-3444
  26. De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes Dev 17: 2245-2258
  27. Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974-2985
  28. Wolfsberg TG, Gabrielian AE, Campbell MJ, Cho RJ, Spouge JL, Landsman D (1999) Candidate regulatory sequence elements for cell cycle-dependent transcription in Saccharomyces cerevisiae.
  29. Verstrepen K, Klis F (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5- 15
  30. Domergue R, Castaño I, De Las Peñas A, Zupancic M, Lockatell V, Hebel JR, Johnson D, Cormack BP (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308: 866- 870
  31. Kojic E, Darouiche R (2004) Candida infections of medical devices. Clin Microbiol Rev 17: 255-267
  32. Köhler T, Wesche S, Taheri N, Braus GH, Mösch HU (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1: 673-686
  33. Loy CJ, Lydall D, Surana U (1999) NDD1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 19: 3312-3327
  34. Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22: 3994-4000
  35. Chavel C, Dionne H, Birkaya B, Joshi J, Cullen P (2010) Multiple signals converge on a differentiation MAPK pathway. PLoS Genet 6
  36. Gray J, Petsko G, Johnston G, Ringe D, Singer R, Werner-Washburne M (2004) "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68: 187-206
  37. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26: 239-256
  38. Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden R, Young R, Lonvaud A, Denayrolles M, van Vuuren H (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat Biotechnol 15: 253-257
  39. Vincent O, Townley R, Kuchin S, Carlson M (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15: 1104-1114
  40. Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17: 171-180
  41. Mendoza I, Rubio F, Rodríguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269: 8792-8796
  42. Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433-470
  43. Gagiano M, van Dyk D, Bauer F, Lambrechts M, Pretorius I (1999a) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31: 103-116
  44. Sieiro C, Reboredo NM, Villa TG (1995) Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae. J Ind Microbiol 14: 461-466
  45. Dirick L, Moll T, Auer H, Nasmyth K (1992) A central role for SWI6 in modulating cell cycle Start- specific transcription in yeast. Nature 357: 508-513
  46. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569-4574
  47. Corden JL, Patturajan M (1997) A CTD function linking transcription to splicing. Trends Biochem Sci 22: 413-416
  48. Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279: 5169-5176
  49. Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44: 1-7
  50. Kullas A, Martin S, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66: 858-871
  51. Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4: 461-469
  52. Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535-1538
  53. Liao SM, Zhang J, Jeffery DA, Koleske AJ, Thompson CM, Chao DM, Viljoen M, van Vuuren HJ, Young RA (1995) A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193-196
  54. Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276: 1850-1856
  55. Kumamoto C, Vinces M (2005) Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59: 113-133
  56. Tréton B, Blanchin-Roland S, Lambert M, Lépingle A, Gaillardin C (2000) Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and paIH. Mol Gen Genet 263: 505-513
  57. Cormack B, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285: 578-582
  58. Sato M, Maeba H, Watari J, Takashio M (2002) Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast. J Biosci Bioeng 93: 395-398
  59. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138: 179-207
  60. Dallies N, Francois J, Paquet V (1998) A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14: 1297-1306
  61. Haro R, Garciadeblas B, Rodríguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291: 189-191
  62. Cross FR, Tinkelenberg AH (1991) A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65: 875-883
  63. Arbeit und für die Plattform zum wissenschaftlichen Austausch, die es mir bot.
  64. Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261: 1551-1557
  65. Kraakman L, Lemaire K, Ma P, Teunissen A, Donaton M, Van Dijck P, Winderickx J, de Winde J, Thevelein J (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32: 1002-1012
  66. Tesfaigzi J, Smith-Harrison W, Carlson DM (1994) A simple method for reusing western blots on PVDF membranes. BioTechniques 17: 268-269
  67. Lipman DJ, Altschul SF, Kececioglu JD (1989) A tool for multiple sequence alignment. Proc Natl Acad Sci U S A 86: 4412-4415
  68. Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8: 378-384
  69. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435-464
  70. Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878-881
  71. Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771: 405-420
  72. Freifelder D (1960) Bud position in Saccharomyces cerevisiae. J Bacteriol 80: 567-568
  73. Cyert MS (2003) Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311: 1143-1150
  74. Gaur NK, Smith RL, Klotz SA (2002) Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches. Cell Commun Adhes 9: 45-57
  75. Koch C, Nasmyth K (1994) Cell cycle regulated transcription in yeast. Curr Opin Cell Biol 6: 451-459
  76. Hilkens J, Ligtenberg MJ, Vos HL, Litvinov SV (1992) Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci 17: 359-363
  77. Fleet GH (1991) Cell walls. In: Rose, A H and Harrison J S (eds) The yeasts, London; Academic Press 4, 2nd edn: 199-277
  78. Hung W, Olson KA, Breitkreutz A, Sadowski I (1997) Characterization of the basal and pheromone- stimulated phosphorylation states of Ste12p. Eur J Biochem 245: 241-251
  79. Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barceló A, Ariño J (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279: 43614- 43624
  80. Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP- dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371-1377
  81. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273-3297
  82. Rose M, Botstein D (1983) Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol 101: 167-180
  83. Hayashi M, Ohkuni K, Yamashita I (1998) Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Yeast 14: 905-913
  84. Mitchell AP (1994) Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58: 56-70
  85. Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25: 107-123
  86. Lowndes NF, Johnson AL, Johnston LH (1991) Coordination of expression of DNA synthesis genes in budding yeast by a cell-cycle regulated trans factor. Nature 350: 247-250
  87. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ (1995) Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 270: 30093-30101
  88. Shen ZM, Wang L, Pike J, Jue CK, Zhao H, de Nobel H, Kurjan J, Lipke PN (2001) Delineation of functional regions within the subunits of the Saccharomyces cerevisiae cell adhesion molecule a- agglutinin. J Biol Chem 276: 15768-15775
  89. Dem Graduiertenkolleg 1216 der DFG gilt der Dank für die Unterstützung meiner
  90. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-517
  91. Steinbrecher E, Sohr D, Nassauer A, Daschner F, Rüden H, Gastmeier P (2000) Die häufigsten Erreger bei Intensivpatienten mit nosokomialen Infektionen. Chemotherapie Journal 5: 179-183
  92. Phaff HJ (1986) Ecology of yeasts with actual and potential value in biotechnology Microbial Ecology - Springer Verlag 12: 31-42
  93. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350-1354
  94. Hervás-Aguilar A, Rodríguez JM, Tilburn J, Arst HN, Jr., Peñalva MA (2007) Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc finger transcription factor PacC. J Biol Chem 282: 34735-34747
  95. Stratford M (1989) Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast Spec No: 441-445
  96. Douglas LM, Li L, Yang Y, Dranginis AM (2007) Expression and characterization of the flocculin
  97. Staab J, Bahn Y-S, Tai C-H, Cook P, Sundstrom P (2004) Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem 279: 40737-40747
  98. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71-76
  99. Zara S, Bakalinsky A, Zara G, Pirino G, Demontis MA, Budroni M (2005) FLO11-based model for air- liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl Environ Microbiol 71: 2934-2939
  100. Koranda M, Schleiffer A, Endler L, Ammerer G (2000) Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406: 94-98
  101. Overkamp KM, Kotter P, van der Hoek R, Schoondermark-Stolk S, Luttik MA, van Dijken JP, Pronk JT (2002) Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19: 509-520
  102. Loza L, Fu Y, Ibrahim AS, Sheppard DC, Filler SG, Edwards JE, Jr. (2004) Functional analysis of the Candida albicans ALS1 gene product. Yeast 21: 473-482
  103. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JEJ (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279: 30480-30489
  104. Odds FC (1988) Candida and candidosis. 2nd edn Bailliere Tindall, London Oh SH, Cheng G, Nuessen JA, Jajko R, Yeater KM, Zhao X, Pujol C, Soll DR, Hoyer LL (2005) Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151: 673-681
  105. Dever TE, Hinnebusch AG (2005) GCN2 whets the appetite for amino acids. Mol Cell 18: 141-142
  106. Hinnebusch AG (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Broach, JR, Jones, EW, and Pringle, JR (eds) The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisae: Gene Expression Cold Spring Harbor Laboratory Press, NY Hinnebusch AG (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 272: 21661-21664
  107. Nobile C, Mitchell A (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8: 1382-1391
  108. Carlson M (1997) Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 13: 1-23
  109. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257
  110. Kessler G, Nickerson WJ (1959) Glucomannan-protein complexes from cell walls of yeasts. J Biol Chem 234: 2281-2285
  111. Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38: 348-358
  112. Wilson W (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6: 1426-1434
  113. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2: 202-207
  114. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68: 547-559
  115. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127-6145
  116. Udenfriend S, Kodukula K (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 64: 563-591
  117. Davis D (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol
  118. Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3: 1166-1178
  119. Su SS, Mitchell AP (1993a) Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133: 67-77
  120. Riezman H, Hase T, van Loon AP, Grivell LA, Suda K, Schatz G (1983) Import of proteins into mitochondria: a 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J 2: 2161-2168
  121. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108: 501- 512
  122. Zhao H, Shen ZM, Kahn PC, Lipke PN (2001) Interaction of alpha-agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol 183: 2874-2880
  123. Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17: 3326-3341
  124. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27-36
  125. Fleet GH, Manners DJ (1976) Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 94: 180-192
  126. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401: 788-791
  127. Lebenslauf Die Seite 204 (Lebenslauf) enthält persönliche Daten. Sie ist deshalb nicht Bestandteil der Online-Veröffentlichung.
  128. Stratford M (1992) Lectin-mediated aggregation of yeasts-yeast flocculation. Biotechnol Genet Eng Rev 10: 283-341
  129. Teunissen AW, van den Berg JA, Steensma HY (1995) Localization of the dominant flocculation genes FLO5 and FLO8 of Saccharomyces cerevisiae. Yeast 11: 735-745
  130. Cappellaro C, Baldermann C, Rachel R, Tanner W (1994) Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a-and alpha-agglutinin. EMBO J 13: 4737-4744
  131. Konno N, Ishii M, Nagai A, Watanabe T, Ogasawara A, Mikami T, Matsumoto T (2006) Mechanism of Candida albicans transformation in response to changes of pH. Biol Pharm Bull 29: 923-926
  132. Myers LC, Kornberg RD (2000) Mediator of transcriptional regulation. Annu Rev Biochem 69: 729-749 Literaturverzeichnis 194
  133. Sherman F, Fink GR, Hicks J (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  134. Su SS, Mitchell AP (1993b) Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res 21: 3789-3797
  135. Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10: 211-225
  136. Wisplinghoff H, Bischoff T, Tallent S, Seifert H, Wenzel R, Edmond M (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39: 309-317
  137. Sheff M, Thorn K (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21: 661-670
  138. Gemmill TR, Trimble RB (1999) Overview of N-and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426: 227-237
  139. Prusky D, Yakoby N (2003) Pathogenic fungi: leading or led by ambient pH? Mol Plant Pathol 4: 509- 516
  140. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 2075-2078
  141. Erdman S, Lin L, Malczynski M, Snyder M (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140: 461-483
  142. Huang G, Zhang M, Erdman SE (2003) Posttranslational modifications required for cell surface localization and function of the fungal adhesin Aga1p. Eukaryot Cell 2: 1099-1114
  143. Kupchak BR, Garitaonandia I, Villa NY, Mullen MB, Weaver MG, Regalla LM, Kendall EA, Lyons TJ (2007) Probing the mechanism of FET3 repression by Izh2p overexpression. Biochimica et Biophysica Acta -Molecular Cell Research 1773: 1124-1132
  144. Nakamura T, Liu Y, Hirata D, Namba H, Harada S, Hirokawa T, Miyakawa T (1993) Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 12: 4063-4071
  145. Sorger PK, Pelham HR (1987) Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6: 3035-3041
  146. Groes M, Teilum K, Olesen K, Poulsen F, Henriksen A (2002) Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Crystallographica Section D 58: 2135-2137
  147. Denison S, Negrete-Urtasun S, Mingot J, Tilburn J, Mayer W, Goel A, Espeso E, Peñalva M, Arst H (1998) Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Mol Microbiol 30: 259-264
  148. Peñalva M, Arst H (2004) Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58: 425-451
  149. Schäfer M (2009) Regulation des Oberflächenflokkulingens FLO11 von Saccharomyces cerevisiae durch Transkriptionsfaktoren des Rim101-Signalwegs. Diplomarbeit
  150. Ernst JF (2000) Regulation of dimorphism in Candida albicans. Contrib Microbiol 5: 98-111
  151. Caddick M, Brownlee A, Arst H (1986) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet 203: 346-353
  152. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell 12: 323-337
  153. Klis FM (1994) Review: cell wall assembly in yeast. Yeast 10: 851-869
  154. Teunissen AW, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11: 1001-1013
  155. Critchley IA, Douglas LJ (1987) Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 133: 637-643
  156. Kuchin S, Vyas VK, Carlson M (2003) Role of the yeast Snf1 protein kinase in invasive growth. Biochem Soc Trans 31: 175-177
  157. Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6: 2214-2221
  158. Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I (2009) The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9: 202-216
  159. Brown MR, Gilbert P (1993) Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol 74 Suppl: 87S-97S
  160. Teunissen AW, Holub E, van der Hucht J, van den Berg JA, Steensma HY (1993) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9: 423-427
  161. Honigberg S, Purnapatre K (2003) Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116: 2137-2147
  162. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64: 746-785
  163. Kumar C (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42: 9-27
  164. Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 57: 383-401
  165. Chen MH, Shen ZM, Bobin S, Kahn PC, Lipke PN (1995) Structure of Saccharomyces cerevisiae alpha- agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 270: 26168-26177
  166. Yoneyama M (1957) Studies on natural habitats of yeasts -bark-inhabiting yeasts. Journal of Science of the Hiroshima University, Series B, Div 2 (Botany) 8: 19-38
  167. Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36: 317-328
  168. Lowndes NF, Johnson AL, Breeden L, Johnston LH (1992) SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature 357: 505-508
  169. Castaño I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 1246-1258
  170. Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2: 43-53
  171. Hoyer LL, Hecht JE (2000) The ALS6 and ALS7 genes of Candida albicans. Yeast 16: 847-855
  172. Hoyer L (2001) The ALS gene family of Candida albicans. Trends Microbiol 9: 176-180
  173. Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Molecular Biology of the Cell 9: 161-171
  174. Kapteyn JC, Hoyer LL, Hecht JE, Muller WH, Andel A, Verkleij AJ, Makarow M, Van Den Ende H, Klis FM (2000) The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35: 601-611
  175. Kapteyn JC, Van Egmond P, Sievi E, Van Den Ende H, Makarow M, Klis FM (1999) The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1,6-glucan-deficient mutants. Mol Microbiol 31: 1835-1844
  176. Durocher D, Henckel J, Fersht AR, Jackson SP (1999) The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 4: 387-394
  177. Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645-658
  178. Cornet M, Richard ML, Gaillardin C (2009) The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res Microbiol 160: 219-223
  179. Shore P, Sharrocks A (1995) The MADS-box family of transcription factors. Eur J Biochem 229: 1-13
  180. Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In Broach JR, Strathern J, Jones E (ed), Molecular biology of the yeast Saccharomyces cerevisiae: life cycle and inheritance Cold Spring Harbor Laboratory, Cold Spring Harbor, NY: 97-142
  181. Bürglin TR (1991) The TEA domain: a novel, highly conserved DNA-binding motif. Cell 66: 11-12
  182. Heise B, van der Felden J, Kern S, Malcher M, Brückner S, Mösch H-U (2010) The TEA transcription factor Tec1 confers promoter-specific gene regulation by mechanisms dependent and independent of Ste12. Eukaryot Cell 9: 514-531
  183. Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Ariño J (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281: 36632-36642
  184. Serrano R, Ruiz A, Bernal D, Chambers JR, Ariño J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46: 1319-1333
  185. Dujon B (1996) The yeast genome project: what did we learn? Trends Genet 12: 263-270
  186. Espeso EA, Peñalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271: 28825-28830
  187. Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987b) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277-287
  188. Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4: 728- 735
  189. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21: 4347-4368
  190. Tenney KA, Glover CV (1999) Transcriptional regulation of the S. cerevisiae ENA1 gene by casein kinase II. Mol Cell Biochem 191: 161-167
  191. Cook JG, Bardwell L, Kron SJ, Thorner J (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10: 2831-2848
  192. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406: 90-94
  193. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090
  194. Calderone R (2001) Virulence factors of Candida albicans. Trends Microbiol 9: 327-335
  195. Olesen J, Hahn S, Guarente L (1987) Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell 51: 953-961
  196. Hahn S, Guarente L (1988) Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 240: 317-321
  197. Mendizabal I, Rios G, Mulet JM, Serrano R, de Larrinoa IF (1998) Yeast putative transcription factors involved in salt tolerance. FEBS Lett 425: 323-328
  198. Jansen G, Wu C, Schade B, Thomas D, Whiteway M (2005) Drag&Drop cloning in yeast. Gene 344: 43- 51
  199. Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7: 559-574
  200. Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE (1996) Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19: 1255-1263
  201. Kent NA, Eibert SM, Mellor J (2004) Cbf1p is required for chromatin remodeling at promoter-proximal CACGTG motifs in yeast. J Biol Chem 279: 27116-27123
  202. Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB, Nasmyth K (1991) The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65: 145-161
  203. Rigden D (2004) The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 29: 335-339
  204. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15: 963-972
  205. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274: 546, 563-547
  206. Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30: 53-88
  207. Peñalva MA, Tilburn J, Bignell E, Arst HN (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16: 291-300
  208. Pan X, Heitman J (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 8364-8372
  209. Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999b) Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181: 6497-6508
  210. Green CB, Zhao X, Hoyer LL (2005) Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun 73: 1852-1855
  211. Cheng G, Wozniak K, Wallig MA, Fidel PL, Jr., Trupin SR, Hoyer LL (2005) Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 73: 1656-1663
  212. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180: 3735-3740
  213. Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180: 6503-6510
  214. Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE, Filler SG (1998) Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66: 1783-1786
  215. Kuchin S, Carlson M (1998) Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol Cell Biol 18: 1163-1171
  216. Mingot JM, Tilburn J, Diez E, Bignell E, Orejas M, Widdick DA, Sarkar S, Brown CV, Caddick MX, Espeso EA, Arst HN, Peñalva MA (1999) Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol Cell Biol 19: 1390-1400
  217. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18: 1257-1269
  218. Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1: 22-32
  219. Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci USA 102: 12141-12146
  220. Rothfels K, Tanny J, Molnar E, Friesen H, Commisso C, Segall J (2005) Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25: 6772-6788
  221. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
  222. Foreman PK, Davis RW (1993) Point mutations that separate the role of Saccharomyces cerevisiae centromere binding factor 1 in chromosome segregation from its role in transcriptional activation. Genetics 135: 287-296
  223. Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978
  224. Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145: 63-73
  225. Mösch HU, Fink GR (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671-684
  226. Krüger J, Aichinger C, Kahmann R, Bölker M (1997) A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential. Genetics 147: 1643-1652
  227. Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d'Enfert C, Gaillardin C, Odds FC, Brown AJ (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20: 4742-4752
  228. Diez E, Alvaro J, Espeso EA, Rainbow L, Suarez T, Tilburn J, Arst HN, Jr., Peñalva MA (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21: 1350-1359
  229. Hayashi M, Fukuzawa T, Sorimachi H, Maeda T (2005) Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 25: 9478-9490
  230. Jue CK, Lipke PN (2002) Role of Fig2p in agglutination in Saccharomyces cerevisiae. Eukaryot Cell 1: 843-845
  231. Zhang M, Bennett D, Erdman SE (2002) Maintenance of mating cell integrity requires the adhesin Fig2p. Eukaryot Cell 1: 811-822
  232. Kamai Y, Kubota M, Hosokawa T, Fukuoka T, Filler SG (2002) Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 70: 5256-5258
  233. Vyas VK, Berkey CD, Miyao T, Carlson M (2005) Repressors Nrg1 and Nrg2 regulate a set of stress- responsive genes in Saccharomyces cerevisiae. Eukaryot Cell 4: 1882-1891
  234. Santangelo G (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253- 282
  235. de Nadal E, Casadomé L, Posas F (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23: 229-237
  236. van Dyk D, Pretorius IS, Bauer FF (2005) Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169: 91-106
  237. Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann J (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524
  238. Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston M (1998) Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150: 1377-1391
  239. Sidorova J, Breeden L (1999) The MSN1 and NHP6A genes suppress SWI6 defects in Saccharomyces cerevisiae. Genetics 151: 45-55
  240. Leza MA, Elion EA (1999) POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2. Genetics 151: 531-543
  241. Hollenhorst PC, Bose ME, Mielke MR, Müller U, Fox CA (2000) Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 154: 1533-1548
  242. Lee M, Chatterjee S, Struhl K (2000) Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast. Genetics 155: 1535-1542
  243. Palecek SP, Parikh AS, Kron SJ (2000) Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156: 1005- 1023
  244. Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, Klis FM, Arnold J (2001) Characterization of agglutinin- like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157: 1555-1567
  245. Vyas VK, Kuchin S, Carlson M (2001) Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158: 563-572
  246. van Dyk D, Hansson G, Pretorius IS, Bauer FF (2003) Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics 165: 1045-1058
  247. Lamb T, Mitchell A (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23: 677-686
  248. Rauceo JM, De Armond R, Otoo H, Kahn PC, Klotz SA, Gaur NK, Lipke PN (2006) Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 5: 1664-1673
  249. Hawser SP, Douglas LJ (1995) Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39: 2128-2131
  250. Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100: 8839-8843
  251. Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97: 12158-12163
  252. Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65: 5289-5294
  253. Cullen PJ, Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97: 13619-13624
  254. Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144-7151
  255. Sun K, Coic E, Zhou Z, Durrens P, Haber JE (2002) Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes Dev 16: 2085-2096
  256. Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75: 2126-2135
  257. Dranginis A, Rauceo J, Coronado J, Lipke P (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71: 282-294
  258. Peñas MM, Hervás-Aguilar A, Múnera-Huertas T, Reoyo E, Peñalva MA, Arst HN, Tilburn J (2007) Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell 6: 960-970
  259. Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes. J Cell Biol 127: 373-386
  260. Lu CF, Montijn RC, Brown JL, Klis F, Kurjan J, Bussey H, Lipke PN (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128: 333-340
  261. Ruiz A, Ariño J (2007) Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6: 2175-2183
  262. Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink HJ, Munera-Huertas T, Stanton L, Hervas-Aguilar A, Espeso EA, Tilburn J, Arst HN, Jr., Peñalva MA (2007) Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell 6: 2365-2375
  263. Reynolds T, Jansen A, Peng X, Fink G (2008) Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell 7: 122-130
  264. Ward MP, Gimeno CJ, Fink GR, Garrett S (1995) SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15: 6854-6863
  265. Lutfiyya LL, Johnston M (1996) Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16: 4790-4797
  266. Dodou E, Treisman R (1997) The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol 17: 1848-1859
  267. Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17: 2099-2106
  268. Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868
  269. Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95: 13783-13787
  270. Zhao X, Daniels K, Oh S-H, Green C, Yeater K, Soll D, Hoyer L (2006) Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152: 2287-2299
  271. Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10: 2180-2196
  272. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135: 726-737
  273. Fichtner L, Schulze F, Braus G (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66: 1276-1289
  274. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143: 1384-1394
  275. Harbison C, Gordon B, Lee T, Rinaldi N, Macisaac K, Danford T, Hannett N, Tagne J-B, Reynolds D, Yoo J, Jennings E, Zeitlinger J, Pokholok D, Kellis M, Rolfe A, Takusagawa K, Lander E, Gifford D, Fraenkel E, Young R (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104
  276. Kron SJ, Styles CA, Fink GR (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003-1022
  277. Naglik J, Fostira F, Ruprai J, Staab J, Challacombe S, Sundstrom P (2006) Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol 55: 1323-1327
  278. Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2: 1266-1273
  279. Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100-2112
  280. Wojciechowicz D, Lu CF, Kurjan J, Lipke PN (1993) Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 13: 2554-2563
  281. Niedenthal R, Stoll R, Hegemann JH (1991) In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1. Mol Cell Biol 11: 3545- 3553
  282. Hahn S, Pinkham J, Wei R, Miller R, Guarente L (1988) The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol 8: 655-663
  283. Celenza JL, Carlson M (1989) Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol 9: 5034-5044
  284. Pinkham JL, Olesen JT, Guarente LP (1987) Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol 7: 578-585
  285. Cannon JF, Tatchell K (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7: 2653-2663
  286. Phaff HJ (2001) Yeasts. Encyclopedia of Life Sciences -John Wiley & Sons Pinkham JL, Guarente L (1985) Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol 5: 3410-3416
  287. Niederberger P, Miozzari G, Hutter R (1981) Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1: 584-593
  288. Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56: 180-194
  289. Klotz SA, Gaur NK, Lake DF, Chan V, Rauceo J, Lipke PN (2004) Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 72: 2029-2034
  290. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 101: 4164-4169
  291. Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA 93: 8419-8424
  292. Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5777-5782
  293. Mösch HU, Roberts RL, Fink GR (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5352-5356
  294. Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK (1995) The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na + pump in the yeast plasma membrane. EMBO J 14: 3870- 3882
  295. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354
  296. Xing Y, Fikes JD, Guarente L (1993) Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J 12: 4647-4655
  297. Li M, Martin S, Bruno V, Mitchell A, Davis D (2004) Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell 3: 741-751
  298. Kuchin S, Yeghiayan P, Carlson M (1995) Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc Natl Acad Sci U S A 92: 4006-4010
  299. Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92: 3132-3136
  300. Kim T, Lee S, Kang H (2004) Glucose repression of STA1 expression is mediated by the Nrg1 and Sfl1 repressors and the Srb8-11 complex. Mol Cell Biol 24: 7695-7706
  301. Xu W, Smith FJ, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Molecular Biology of the Cell 15: 5528-5537
  302. Kullas AL, Li M, Davis DA (2004) Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell 3: 1609-1618
  303. Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87: 3503-3507
  304. Kumamoto CA (2005) A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102: 5576-5581
  305. Park S, Koh S, Chun J, Hwang H, Kang H (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19: 2044-2050
  306. Pan X, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 4874-4887
  307. Espeso EA, Arst HN, Jr. (2000) On the mechanism by which alkaline pH prevents expression of an acid- expressed gene. Mol Cell Biol 20: 3355-3363
  308. Shenhar G, Kassir Y (2001) A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 21: 1603-1612
  309. Mösch HU, Köhler T, Braus GH (2001) Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae. Mol Cell Biol 21: 235-248
  310. Xu W, Mitchell AP (2001) Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183: 6917-6923
  311. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 1191-1243
  312. Sanger F, Nicklen S, Coulson AR (1992) DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24: 104-108
  313. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272
  314. Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15: 291-294
  315. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580
  316. Roberts RL, Mösch HU, Fink GR (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89: 1055-1065
  317. Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29: 207-233
  318. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430: 35-44
  319. Thevelein JM, Cauwenberg L, Colombo S, De Winde JH, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26: 819-825
  320. Van Mulders S, Christianen E, Saerens S, Daenen L, Verbelen P, Willaert R, Verstrepen K, Delvaux F (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9: 178-190
  321. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61: 197-205
  322. Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2: 533-540
  323. Rolland F, Wanke V, Cauwenberg L, Ma P, Boles E, Vanoni M, de Winde JH, Thevelein JM, Winderickx J (2001) The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1: 33-45
  324. Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 16: 293-299


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten