Publikationsserver der Universitätsbibliothek Marburg

Titel:Molekulardynamik und Molekulargraphik von Modellflüssigkeiten
Autor:Gabriel, Adrian
Weitere Beteiligte: Germano, Guido (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0055
DOI: https://doi.org/10.17192/z2011.0055
URN: urn:nbn:de:hebis:04-z2011-00554
DDC: Chemie
Titel (trans.):Molecular dynamics and molecular graphics of model fluids
Publikationsdatum:2011-02-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Computersimulation, Liquid crystals, Molekulardynamik, Coarse graining, Computer simulation, Coarse graining, Molekulargraphik, Molecular graphics, Flüssigkristall, Molecular dynamics

Zusammenfassung:
Es werden molekulardanymik Methoden vorgestellt und auf verschiedene Systeme angewendet (Lorentz Gas, Fluid harter Kugeln). Im Fall des Lorentz Gases wird nach Asymmetrien in den An- und Abklingpfaden großer Fluktuationen der Stromstärke gesucht. Im Fall der harten Kugeln werden Verteilungen für Geschwindigkeit und deren Komponenten, sowie der Energie der Teilchen ermittelt. Des Weiteren wird ein Grafikprogramm vorgestellt, welches im Rahmen der Arbeit entwickelt wurde.

Bibliographie / References

  1. E. Abrahamsson, S. S. Plotkin, BioVEC: A program for biomolecule visualization with ellipsoidal coarse-graining, J. Mol. Graph. Model. 28 (2009) 140–145.
  2. E. Scalas, E. Martin, G. Germano, Ehrenfest urn revisited: Playing the game on a realistic fluid model, Phys. Rev. E 76 (2007) 011104.
  3. S. Miller, S. Luding, Event-driven molecular dynamics in parallel, J. Comput. Phys. 193 (2003) 306–315.
  4. G. Paul, A complexity O(1) priority queue for event driven molecular dynamics simulations, J. Comput. Phys. 221 (2007) 615–625.
  5. M. Isobe, Simple and efficient algorithm for large scale molecular dynamics simula- tion in hard disk system, Int. J. Mod. Phys. C 10 (1999) 1281–1293.
  6. C. Paneni, D. J. Luding, L. Rondoni, Temporal asymmetry of fluctuations in none- quilibrium steady states, J. Chem. Phys. 124 (2006) 114109.
  7. C. Zannoni, Molecular design and computer simulations of novel mesophases, J. Mater. Chem. 11 (2001) 2637–2646.
  8. M. R. Wilson, Progress in computer simulations of liquid crystals, Int. Rev. Phys. Chem. 24 (2005) 421–455.
  9. M. R. Wilson, M. P. Allen, M. A. Warren, A. Sauron, W. Smith, Replicated data and domain decomposition molecular dynamics techniques for simulation of anisotropic potentials, J. Comput. Chem. 18 (1997) 478–488.
  10. A. T. Gabriel, T. Meyer, G. Germano, Molecular graphics of convex body fluids, J. Chem. Theory Comput. 4 (2008) 468–476.
  11. M. P. Allen, G. Germano, Expressions for forces and torques in molecular simulati- ons using rigid bodies, Mol. Phys. 104 (2006) 3225–3235.
  12. C. Stillings, E. Martin, M. Steinhart, R. Pettau, J. Paraknowitsch, M. Geuss, J. Schmidt, G. Germano, H. W. Schmidt, U. Gösele, J. H. Wendorff, Nanoscaled discotic liquid crystal/polymer systems: Confinement effects on morphology and thermodynamics, Mol. Cryst. Liq. Cryst. 495 (2008) 285.
  13. M. P. Allen, G. T. Evans, D. Frenkel, B. M. Mulder, Hard convex body fluids, Adv. Chem. Phys. 86 (1993) 1–166.
  14. D. G. Luchinsky, P. V. E. McClintock, Irreversibility of classical fluctuations studied in analogue electrical circuits, Nature 389 (1997) 463–466.
  15. C. Chiccoli, P. Pasini, F. Semeria, C. Zannoni, Three-dimensional visualization of molecular organization and phase transitions in liquid crystal lattice models, Int. J. Mod. Phys. C 3 (1992) 1209–1220.
  16. A. Sergi, M. Ferrario, D. Costa, Reversible integrators for basic extended system molecular dynamics, Mol. Phys. 97 (1999) 825–832.
  17. C. Amovilli, I. Cacelli, G. Cinacchi, L. D. Gaetani, G. Prampolini, A. Tani, Structure and dynamics of mesogens using intermolecular potentials derived from ab initio calculations, Theor. Chem. Acc. 117 (2007) 885–901.
  18. D. Caprion, L. Bellier-Castella, J.-P. Ryckaert, Influence of shape and energy aniso- tropies on the phase diagram of discotic molecules, Phys. Rev. E 67 (2003) 041703.
  19. J. S. Lintuvuori, M. R. Wilson, A coarse-grained simulation study of mesophase formation in a series of rod-coil multiblock copolymers, Phys. Chem. Chem. Phys 11 (2009) 2116–2125.
  20. D. Brown, J. H. R. Clarke, A comparison of constant energy, constant tempera- ture and constant pressure ensembles in molecular dynamics simulations of atomic liquids, Mol. Phys. 51 (1984) 1243–1252.
  21. M. L. Connolly, Analytical molecular surface calculation, J. Appl. Crystallogr. 15 (1983) 548–558.
  22. M. Marin, P. Cordero, An empirical assessment of priority-queues in event driven molecular dynamics simulation, Comput. Phys. Commun. 92 (1995) 214–224.
  23. B. Martinez-Haya, A. Cuetos, S. Lago, L. F. Rull, A novel orientation-dependent potential model for prolate mesogens, J. Chem. Phys. 122 (2005) 024908.
  24. D. Costantini, U. Garibaldi, A probabilistic foundation of elementary particle sta- tistics. Part I, Stud. Hist. Phil. Mod. Phys. 28 (1997) 483–506.
  25. J. Li, Atomeye: An efficient atomistic configuration viewer, Model. Simul. Mater. Sc. 11 (2003) 173–177.
  26. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519.
  27. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A. 31 (1985) 1695–1697.
  28. L. Brillouin, Comparison des différent statistiques appliquées aux problèmes des quanta, Ann. Phys. Paris 7 (1927) 315–331.
  29. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Paperback Edition, Oxford University Press, Oxford, 1989.
  30. M. A. Bates, G. R. Luckhurst, Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure, J. Chem. Phys. 104 (1996) 6696–6709.
  31. T. Kihara, Convex molecules in gaseous and crystalline states, Adv. Chem. Phys. 5 (1963) 147–188.
  32. A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. 136 (1964) A405–A411.
  33. M. Marin, D. Risso, P. Cordero, Efficient algorithms for many-body hard particle molecular dynamics, J. Comput. Phys. 109 (1993) 306–317.
  34. D. ter Haar, Elements of Statistical Mechanics, Rinehart & Company, New York, 1954.
  35. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equa- tion of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087–1092.
  36. L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953) 1505–1512.
  37. O. Penrose, Foundations of Statistical Mechanics, Hardcover Edition, Pergamon Press, Oxford, 1970.
  38. M. N. Rosenbluth, A. W. Rosenbluth, Further results on Monte Carlo equations of state, J. Chem. Phys. 22 (1954) 881–884.
  39. B. D. Lubachevsky, How to simulate billiards and similar systems, J. Chem. Phys. 94 (1991) 255–283.
  40. J. C. Maxwell, Illustrations of the dynamical theory of gases. Part 1. On the motions and collisions of perfectly elastic spheres, Phil. Mag. 19 (1860) 19–32.
  41. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Macroscopic fluc- tuation theory for stationary non-equilibrium states, J. Stat. Phys. 107 (2002) 635– 675.
  42. J. G. Gay, B. J. Berne, Modification of the overlap potential to mimic a linear site-site potential, J. Chem. Phys. 74 (1981) 3316–3319.
  43. H. C. Andersen, Molecular dynamics simulations at constant pressure and/or tem- perature, J. Chem. Phys. 72 (1980) 2384–2393.
  44. R. B. Corey, L. C. Pauling, Molecular models of amino acids, peptides, and proteins, Rev. Sci. Instrum. 24 (1953) 621–627.
  45. R. Berardi, A. P. J. Emerson, C. Zannoni, Monte Carlo investigations of a Gay- Berne liquid crystal, J. Chem. Soc. Faraday T. 89 (1993) 4069–4078.
  46. J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc. London 157 (1860) 49–88.
  47. H. F. Trotter, On the product of semi–groups of operators, Proc. Am. Math Soc. 10 (1959) 545.
  48. Z. W. Li, L. J. Chen, Y. Zhao, Z. Y. Lu, Ordered packing of soft discoidal system, J. Phys. Chem B 112 (2008) 13842–13848.
  49. G. Prampolini, Parametrization and validation of coarse grained force-fields derived from ab initio calculations, J. Chem. Theory Comput. 2 (2006) 556–567.
  50. C. K. Lee, C. C. Hua, S. A. Chen, Parametrization of the Gay-Berne potential for conjugated oligomer with a high aspect ratio, J. Chem. Phys. 133 (2010) 064902.
  51. G. Cinacchi, J. S. van Duijneveldt, Phase behavior of contact lens-like particles: Entropy-driven competition between isotropic-nematic phase separation and cluste- ring, J. Phys. Chem. Lett. 1 (2010) 787–791.
  52. G. Cinacchi, J. S. van Duijneveldt, Phase behaviour of contact lens-like particles: Entropy-driven competition between isotropic-nematic pase separation and cluste- ring, J. Phys. Chem. Lett. 1 (2010) 787–791.
  53. B. J. Alder, T. E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27 (1957) 1208–1209.
  54. W. L. Koltun, Precision space-filling atomic models, Biopolymers 3 (1965) 665–679.
  55. M. E. Tuckerman, G. J. Martyna, B. J. Berne, Reversible multiple time scale mole- cular dynamics, J. Chem. Phys. 97 (1992) 1990–2001.
  56. J. S. Richardson, Schematic drawings of protein structures, Method. Enzymol. 115 (1985) 359–380.
  57. Z. W. Li, Z. Y. Sun, Z. Y. Lu, Simulation model for hierarchical self-assembly of soft disklike particles, J. Phys. Chem B 114 (2010) 2353–2358.
  58. M. L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science 221 (1983) 709–713.
  59. J. S. Lintuvuori, M. R. Wilson, Statistical temperature molecular dynamics simula- tions applied to phase transitions in liquid crystalline systems, J. Chem. Phys. 132 (2010) 224902.
  60. L. Boltzmann, Studien über das Gleichgewicht der lebendigen Kraft zwischen be- wegten materiellen Punkten, Wien. Ber. 58 (1868) 517–560.
  61. J. S. Richardson, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34 (1981) 167–339.
  62. D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd Edition, Cam- bridge University Press, Cambridge, 2004.
  63. N. M. Josuttis, The C++ Standard Library — A Tutorial and Reference, Addison- Wesley, Boston, 1999.
  64. B. Lee, F. M. Richards, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55 (1971) 379–400.
  65. M. L. Connolly, The molecular surface package, J. Mol. Graph. 11 (1993) 139–141.
  66. R. C. Tolman, The Principles of Statistical Mechanics, Oxford University Press, Oxford, 1938.
  67. D. Frenkel, B. Smit, Understanding Molecular Simulation – From Algorithms to Applications, 2nd Edition, Academic Press, San Diego, 2002.
  68. A. Gamba, L. Rondoni, Current fluctuations in the nonequilibrium Lorentz gas, Physica A 340 (2004) 274–282.
  69. C. Giberti, L. Rondoni, C. Vernia, Asymmetric fluctuation-relaxation paths in FPU models, Physica A 365 (2006) 229–234.
  70. W. L. Delano, The PyMOL molecular graphics system, DeLano Scientific, Palo Alto, CA, USA, http://pymol.sourceforge.net (accessed Oct 13, 2010).
  71. E. A. Merritt, D. J. Bacon, Raster3d: Photorealistic molecular graphics, Method. Enzymol. 277 (1997) 505–524, http://skuld.bmsc.washington.edu/raster3d (acces- sed Oct 13, 2010).
  72. D. L. Cheung, S. A. F. Bon, Interaction of nanoparticles with ideal liquid-liquid interfaces, Phys. Rev. Lett. 102 (2009) 066103.
  73. D. L. Cheung, Monte Carlo simulations of liquid crystals between microstructured substrates, J. Chem. Phys. 128 (2008) 194902.
  74. P. J. Kraulis, MolScript — A program to produce both detailed and sche- matic plots of protein structures, J. Appl. Crystallogr. 24 (1991) 946–950, http://www.avatar.se/molscript (accessed Oct 13, 2010).
  75. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Green- blatt, E. C. Meng, T. E. Ferrin, UCSF Chimera — A visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612, http://www.cgl.ucsf.edu/chimera (accessed Oct 13, 2010).
  76. W. C. Swope, H. C. Andersen, P. H. Berens, Computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of mole- cules — application to small water clusters, J. Chem. Phys. 76 (1982) 637–649.
  77. N. Attig, K. Binder, H. Grubmüller, K. Kremer (Eds.), Computational Soft Mat- ter: From Synthetic Polymers to Proteins, Forschungszentrum Jülich, Jülich, 2004, http://www.fz-juelich.de/nic-series/volume23 (accessed Oct 13, 2010).
  78. Jmol: an open-source java viewer for chemical structures in 3d, http://www.jmol.org (accessed Oct 13, 2010).
  79. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Ver- sion 2.2, High Performance Computing Center Stuttgart (HLRS), Stuttgart, 2009, http://www.mpi-forum.org (accessed Oct 13, 2010).
  80. A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. OƂdziej, K. Wachucik, H. A. Scheraga, Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the ef- fective energy function and tests of the optimization method with single training proteins, J. Phys. Chem. B 111 (2007) 260–285.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten