Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchung zur pharmakologischen Aktivierung arterieller KCa3.1-Kanäle durch SKA-31.
Autor:Schultz, Tim
Weitere Beteiligte: Köhler, Ralf (PD Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0025
URN: urn:nbn:de:hebis:04-z2011-00250
DOI: https://doi.org/10.17192/z2011.0025
DDC: Medizin
Titel (trans.):Activation of arterial KCa3.1 channels with SKA-31
Publikationsdatum:2011-02-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
endothelium, Endothel

Zusammenfassung:
Die EDHF-Antwort ist neben NO und PGI2 der dritte Hauptweg der endothelvermittelten Vasodilatation und eine selektive Öffnung des KCa3.1 Kanals könnte den Ansatzpunkt für eine neue Strategie zur Blutdrucksenkung darstellen (Feletou & Vanhoutte 2006, Sankaranarayanan et al. 2009). Im Speziellen wurde an A.c.c. von Wildtyp- (KCa3.1+/+) und Knockouttieren (KCa3.1-/-) der Einfluss von SKA-31 auf die durch Azetyllcholin induzierte Vasodilatation untersucht. Ebenfalls war es Ziel zu überprüfen, ob SKA-31 einen Einfluss auf die durch Phenylephrin und hohe Kaliumkonzentration induzierte Vasokonstriktion hat. Die Ergebnisse der Untersuchungen zeigen, dass SKA-31 die EDHF-vermittelte Vasodilatation deutlich potenziert und eine hohe Selektivität für den KCa 3.1 Kanal besitzt. Auf die glattmuskuläre Funktion bestand kein Einfluss.

Bibliographie / References

  1. Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ. 1998. Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ. Res. 83(12):1248-63
  2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. 2002. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903- 13
  3. Köhler R, Hoyer J. 2007. The endothelium-derived hyperpolarizing factor: insights from genetic animal models. Kidney Int. 72(2):145-50
  4. Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R et al. 2006. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+- activated K+ channel. Circ. Res. 99(5):537-44
  5. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R et al. 1996. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J. Cardiovasc. Pharmacol. 28(5):703-11
  6. Köhler R, Kaistha BP, Wulff H. 2010. Vascular KCa-channels as therapeutic targets in hypertension and restenosis disease. Expert. Opin. Ther. Targets. 14(2):143-55
  7. Zona C, Siniscalchi A, Mercuri NB, Bernardi G. 1998. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85(3):931-8
  8. Strobaek D, Teuber L, Jorgensen TD, Ahring PK, Kjaer K et al. 2004. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H- indole-2,3-dione 3-oxime). Biochim. Biophys. Acta 1665(1-2):1-5
  9. Kruger O, Beny JL, Chabaud F, Traub O, Theis M et al. 2002. Altered dye diffusion and upregulation of connexin37 in mouse aortic endothelium deficient in connexin40. J. Vasc. Res. 39(2):160-72
  10. Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J. 1997. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272(52):32723-6
  11. Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ. 2001. Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 296(2):600-
  12. Wagner C, de WC, Kurtz L, Grunberger C, Kurtz A, Schweda F. 2007. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ. Res. 100(4):556-63
  13. Schumacher MA, Crum M, Miller MC. 2004. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure. 12(5):849-60
  14. Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T. 1997. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J. Pharmacol. Exp. Ther. 282(2):707-14
  15. Köhler R, Degenhardt C, Kuhn M, Runkel N, Paul M, Hoyer J. 2000. Expression and function of endothelial Ca(2+)-activated K(+) channels in human mesenteric artery: A single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ. Circ. Res. 87(6):496-503
  16. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. 2005. Global burden of hypertension: analysis of worldwide data. Lancet 365(9455):217- 23
  17. Köhler R, Brakemeier S, Kuhn M, Behrens C, Real R et al. 2001. Impaired hyperpolarization in regenerated endothelium after balloon catheter injury. Circ. Res. 89(2):174-9
  18. Taylor JH, Andrew TC, Evans WH, Tudor MG. 1998. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetinic acid. British Journal of Pharmacology 125(1):1-3
  19. Nilius B, Droogmans G. 2001. Ion channels and their functional role in vascular endothelium. Physiol Rev. 81(4):1415-59 blocker of the apamin-sensitive Ca(2+)-activated K+ channel. J. Med. Chem. 41(1):2-5
  20. Roux B. 2005. Ion conduction and selectivity in K(+) channels. Annu. Rev. Biophys. Biomol. Struct. 34:153-71
  21. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T et al. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395(6701):503-7
  22. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. 2007. Modulators of small-and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr. Med. Chem. 14(13):1437-57
  23. Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. 1999. Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ. Res. 85(9):e33-e43
  24. Moncada S, Vane JR. 1981. Prostacyclin: its biosynthesis, actions and clinical potential. Philos. Trans. R. Soc. Lond B Biol. Sci. 294(1072):305-29
  25. Smith WL. 1992. Prostanoid biosynthesis and mechanisms of action. Am. J. Physiol 263(2 Pt 2):F181-F191
  26. Johns A, Freay AD, Adams DJ, Lategan TW, Ryan US, van BC. 1988. Role of calcium in the activation of endothelial cells. J. Cardiovasc. Pharmacol. 12
  27. Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV et al. 1996. Small- conductance, calcium-activated potassium channels from mammalian brain. Science 273(5282):1709-14
  28. Yellen G. 2002. The voltage-gated potassium channels and their relatives. Nature 419(6902):35-42
  29. Morimura K, Yamamura H, Ohya S, Imaizumi Y. 2006. Voltage-dependent Ca2+- channel block by openers of intermediate and small conductance Ca2+- activated K+ channels in urinary bladder smooth muscle cells. J. Pharmacol. Sci. 100(3):237-41
  30. Nelson MT, Quayle JM. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol 268(4 Pt 1):C799-C822
  31. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE et al. 2003. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ. Res. 93(2):124-31
  32. Stocker M. 2004. Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5(10):758-70
  33. Soh H, Park CS. 2001. Inwardly rectifying current-voltage relationship of small- conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biophys. J. 80(5):2207-15
  34. Lacy PS, Pilkington G, Hanvesakul R, Fish HJ, Boyle JP, Thurston H. 2000. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Br. J. Pharmacol. 129(3):605-11
  35. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 75(2):281-95


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten