Publikationsserver der Universitätsbibliothek Marburg

Titel:Progressive Splenomegalie und Makrozytose bei KCa3.1-defizienten Mäusen: Die physiologische Bedeutung des Gardos-Kanals im Erythrozyten
Autor:Paschen, Steffen
Weitere Beteiligte: Köhler, Ralf (Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0682
URN: urn:nbn:de:hebis:04-z2010-06829
DOI: https://doi.org/10.17192/z2010.0682
DDC: Medizin
Titel (trans.):Disruption of the Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly
Publikationsdatum:2010-12-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Filterability, Ca2+activated potassium channel, Erythrocytes, Ca2+-aktivierter Kalium-Kanal, Erythrozyten, Fitrierbarkeit, Splenomegalie, Osmotic stress, Osmotischer Stress, Gardos-Kanal, Splenomegaly

Zusammenfassung:
Der Gardos-Kanal (KCa3.1) vermittelt den Ca2+-abhängigen Ausstrom von K+ und Cl- (den Gardos-Effekt) im Erythrozyten. Hierdurch kommt es zu einer Hyperpolarisation der Zellmembran und einem osmotisch bedingten Schrumpfen der Zelle. Diesem Ca2+-aktivierten K+-Kanal wird daher eine entscheidende Rolle für die physiologische Volumenregulation in zirkulierenden Erythrozyten, sowie auch für Krankheiten mit einer pathologischen Volumenregulation zugeschrieben. Insbesondere in der Pathogenese der Sichelzellanämie nimmt der Gardos-Kanal eine zentrale Stellung ein, wodurch diesem Kanal ein besonderes Interesse zuteil wird. Hochpotente, selektive Gardos-Kanal-Inhibitoren, wie beispielsweise Senicapoc, werden aktuell in der Therapie der Sichelzellanämie evaluiert. Während die pathophysiologische Bedeutsamkeit des Gardos-Kanals in der Sichelzellanämie und anderen Erkrankungen intensiv untersucht wurde, ist die tatsächliche funktionelle Relevanz von KCa3.1 sowohl für die physiologische Volumenregulation als auch für die Mechanismen der Eryptose (in Anlehnung an die Apoptose kernhaltiger Zellen) unklar. Auch wurden die Folgen einer genetischen Störung der Expression bis dato nicht detailliert untersucht. Die vorliegende Studie erlaubt die Einordung der physiologischen Rolle. Bei einer Störung der genetischen Expression von KCa3.1 in Mäusen entwickeln diese Tiere eine progressive, moderate Splenomegalie und eine milde Makrozytose. Die Erythrozyten dieser Knock-out Mäuse weisen eine erhöhte Fragilität bei hypoosmotischem Stress im Sinne einer gestörten Volumenregulation und eine verminderte Deformierbarkeit bei der Filtration durch kleine Poren auf. Diese funktionellen Defekte führen zu einer erhöhten Sequestration in der Milz, begleitet von einer erhöhten Eisenablagerung, die hierauf mit einer Arbeitshypertrophie in Form einer stetig zunehmenden Splenomegalie reagiert. Weiterhin konnte mit dieser Studie gezeigt werden, dass der Gardos-Kanal eine zentrale Stellung in der physiologischen Volumenregulation im Erythrozyten einnimmt, die bei einem Ausfall nicht durch andere Systeme kompensiert werden kann. Anders als von anderen Autoren postuliert, konnte keine maßgebliche Rolle von KCa3.1 für die Eryptose nachgewiesen werden. Dabei stellt die vorliegende Studie die erste in vivo Studie zu diesem Themenkomplex dar.

Bibliographie / References

  1. Ishii, T. M., J. Maylie, et al. (1997). "Determinants of apamin and d- tubocurarine block in SK potassium channels." J Biol Chem 272(37): 23195-200.
  2. Roberts, W. M., R. A. Jacobs, et al. (1990). "Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells." J Neurosci 10(11): 3664-84.
  3. Kohler, R. and J. Hoyer (2007). "The endothelium-derived hyperpolarizing factor: insights from genetic animal models." Kidney Int 72(2): 145-50.
  4. Si, H., W. T. Heyken, et al. (2006). "Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+- activated K+ channel." Circ Res 99(5): 537-44.
  5. Mozzarelli, A., J. Hofrichter, et al. (1987). "Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo." Science 237(4814): 500-6.
  6. Gilboa, H., B. E. Chapman, et al. (1994). "19F NMR magnetization transfer between 5-FBAPTA and its complexes. An alternative means for measuring free Ca2+ concentration, and detection of complexes with protein in erythrocytes." NMR Biomed 7(7): 330-8.
  7. Pewitt, E. B., R. S. Hedge, et al. (1990). "[3H]bumetanide binding to avian erythrocyte membranes. Correlation with activation and deactivation of Na/K/2Cl cotransport." J Biol Chem 265(24): 14364-70.
  8. Hebbel, R. P. (1997). "Adhesive interactions of sickle erythrocytes with endothelium." J Clin Invest 100(11 Suppl): S83-6.
  9. Logsdon, N. J., J. Kang, et al. (1997). "A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes." J Biol Chem 272(52): 32723-6.
  10. Fadok, V. A., D. L. Bratton, et al. (2000). "A receptor for phosphatidylserine- specific clearance of apoptotic cells." Nature 405(6782): 85-90.
  11. Heilmann, L. and H. Schmid-Schonbein (1981). "[A rheological method for the measurement of red cell deformability (author's transl)]." Klin Wochenschr 59(4): 181-5.
  12. Singh, S., C. A. Syme, et al. (2001). "Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease." J Pharmacol Exp Ther 296(2): 600- 11.
  13. Rhoda, M. D., M. Apovo, et al. (1990). "Ca2+ permeability in deoxygenated sickle cells." Blood 75(12): 2453-8.
  14. Vergara, C., R. Latorre, et al. (1998). "Calcium-activated potassium channels." Curr Opin Neurobiol 8(3): 321-9.
  15. Lang, F., K. S. Lang, et al. (2003). "Cation channels, cell volume and the death of an erythrocyte." Pflugers Arch 447(2): 121-5.
  16. Lang, K. S., C. Duranton, et al. (2003). "Cation channels trigger apoptotic death of erythrocytes." Cell Death Differ 10(2): 249-56.
  17. Vandorpe, D. H., B. E. Shmukler, et al. (1998). "cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation." J Biol Chem 273(34): 21542-53.
  18. Murphy, E., L. R. Berkowitz, et al. (1987). "Cytosolic free calcium levels in sickle red blood cells." Blood 69(5): 1469-74.
  19. Wulff, H., G. A. Gutman, et al. (2001). "Delineation of the clotrimazole/TRAM- 34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1." J Biol Chem 276(34): 32040-5.
  20. Canham, P. B. (1969). "Difference in geometry of young and old human erythrocytes explained by a filtering mechanism." Circ Res 25(1): 39- 45.
  21. Grgic, I., B. P. Kaistha, et al. (2009). "Disruption of the Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly." Pflugers Arch 458(2): 291-302.
  22. Caldwell, K. K. and R. A. Harris (1985). "Effects of anesthetic and anticonvulsant drugs on calcium-dependent efflux of potassium from human erythrocytes." Eur J Pharmacol 107(2): 119-25.
  23. Grgic, I., B. P. Kaistha, et al. (2009). "Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery." Br J Pharmacol 157(4): 509-26.
  24. Poschl, J. M., C. Leray, et al. (2003). "Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro." Crit Care Med 31(3): 924-8.
  25. Stuart, J. (1985). "Erythrocyte rheology." J Clin Pathol 38(9): 965-77.
  26. Vermes, I., C. Haanen, et al. (2000). "Flow cytometry of apoptotic cell death." J Immunol Methods 243(1-2): 167-90.
  27. Robitaille, R., M. L. Garcia, et al. (1993). "Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release." Neuron 11(4): 645-55.
  28. Litt, M., D. LaMorticella, et al. (1999). "Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1)." Cytogenet Cell Genet 86(1): 70-3.
  29. Eaton, W. A. and J. Hofrichter (1987). "Hemoglobin S gelation and sickle cell disease." Blood 70(5): 1245-66.
  30. Kaczorowski, G. J., H. G. Knaus, et al. (1996). "High-conductance calcium- activated potassium channels; structure, pharmacology, and function." J Bioenerg Biomembr 28(3): 255-67.
  31. Stocker, J. W., L. De Franceschi, et al. (2003). "ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice." Blood 101(6): 2412-8.
  32. Johnson, R. M. and K. Tang (1992). "Induction of a Ca(2+)-activated K+ channel in human erythrocytes by mechanical stress." Biochim Biophys Acta 1107(2): 314-8.
  33. Brugnara, C., L. de Franceschi, et al. (1993). "Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives." J Clin Invest 92(1): 520-6.
  34. Gutman, G. A., K. G. Chandy, et al. (2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels." Pharmacol Rev 57(4): 473-508.
  35. Hille, B., C. M. Armstrong, et al. (1999). "Ion channels: from idea to reality." Nat Med 5(10): 1105-9.
  36. Lew, V. L. and R. M. Bookchin (2005). "Ion transport pathology in the mechanism of sickle cell dehydration." Physiol Rev 85(1): 179-200.
  37. Fadok, V. A., A. de Cathelineau, et al. (2001). "Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts." J Biol Chem 276(2): 1071-7.
  38. Visan, V., Z. Fajloun, et al. (2004). "Mapping of maurotoxin binding sites on hKv1.2, hKv1.3, and hIKCa1 channels." Mol Pharmacol 66(5): 1103- 12.
  39. Lang, K. S., P. A. Lang, et al. (2005). "Mechanisms of suicidal erythrocyte death." Cell Physiol Biochem 15(5): 195-202.
  40. Knauf, P. (2003). Mediated transport. Red Cell Membrane Transport in Health and Disease. Bernhardt. Berlin, Springer-Verlag. 1: 257-302.
  41. Green, D. R. and J. C. Reed (1998). "Mitochondria and apoptosis." Science 281(5381): 1309-12.
  42. Devor, D. C., A. K. Singh, et al. (1996). "Modulation of Cl-secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel." Am J Physiol 271(5 Pt 1): L775-84.
  43. Warth, R., K. Hamm, et al. (1999). "Molecular and functional characterization of the small Ca(2+)-regulated K+ channel (rSK4) of colonic crypts." Pflugers Arch 438(4): 437-44.
  44. Pellegrino, C. M., A. C. Rybicki, et al. (1998). "Molecular identification and expression of erythroid K:Cl cotransporter in human and mouse erythroleukemic cells." Blood Cells Mol Dis 24(1): 31-40.
  45. Butler, A., S. Tsunoda, et al. (1993). "mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels." Science 261(5118): 221-4.
  46. Contreras, R. G., D. Flores-Beni Tez, et al. (2006). "Na+,K+-ATPase and hormone ouabain:new roles for an old enzyme and an old inhibitor." Cell Mol Biol (Noisy-le-grand) 52(8): 31-40.
  47. Ellory, J. C., K. Kirk, et al. (1992). "Nitrendipine is a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes." FEBS Lett 296(2): 219-21.
  48. Bunn, H. F. (1997). "Pathogenesis and treatment of sickle cell disease." N Engl J Med 337(11): 762-9.
  49. Strobaek, D., T. D. Jorgensen, et al. (2000). "Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells." Br J Pharmacol 129(5): 991-9.
  50. Gulbins, E., A. Jekle, et al. (2000). "Physiology of apoptosis." Am J Physiol Renal Physiol 279(4): F605-15.
  51. MacKinnon, R. (2003). "Potassium channels." FEBS Lett 555(1): 62-5.
  52. Choe, S. (2002). "Potassium channel structures." Nat Rev Neurosci 3(2): 115-21.
  53. Grygorczyk, R. and W. Schwarz (1983). "Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique." Cell Calcium 4(5-6): 499-510.
  54. Herrn PD Dr. Ralf Köhler für die Überlassung des Themas und für die exzellente Betreuung meiner Dissertation, allen Mitgliedern der Arbeitsgruppe und allen an diesem Projekt beteiligten für die gute Zusammenarbeit, die technische und fachliche Unterstützung und die gute Atmosphäre,
  55. Stuart, J. and G. B. Nash (1990). "Red cell deformability and haematological disorders." Blood Rev 4(3): 141-7.
  56. Nakamura, T., S. Hasegawa, et al. (1994). "Rheologic and pathophysiologic significance of red cell passage through narrow pores." Blood Cells 20(1): 151-65; discussion 166-8.
  57. Lang, P. A., S. Kaiser, et al. (2003). "Role of Ca2+-activated K+ channels in human erythrocyte apoptosis." Am J Physiol Cell Physiol 285(6): C1553-60.
  58. Heinz, A. and H. Passow (1980). "Role of external potassium in the calcium- induced potassium efflux from human red blood cell ghosts." J Membr Biol 57(2): 119-31.
  59. Eaton, W. A. and J. Hofrichter (1990). "Sickle cell hemoglobin polymerization." Adv Protein Chem 40: 63-279.
  60. Kohler, M., B. Hirschberg, et al. (1996). "Small-conductance, calcium- activated potassium channels from mammalian brain." Science 273(5282): 1709-14.
  61. Southgate, C. D., A. H. Chishti, et al. (1996). "Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton." Nat Genet 14(2): 227-30.
  62. Dunn, P. M. (1998). "The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes." J Membr Biol 165(2): 133-43.
  63. Gardos, G. (1958). "The function of calcium in the potassium permeability of human erythrocytes." Biochim Biophys Acta 30(3): 653-4.
  64. Maher, A. D. and P. W. Kuchel (2003). "The Gardos channel: a review of the Ca2+-activated K+ channel in human erythrocytes." Int J Biochem Cell Biol 35(8): 1182-97.
  65. Ruef, P., J. M. B. Pöschl, et al. (1995). "The rheodyn SSD for measuring erythrocyte deformability." Biorheology 32(2): 357-358.
  66. Ruef, P., J. M. B. Pöschl, et al. (1996). "The shear stress diffractometer Rheodyn SSD for determination of erythrocyte deformability. II. Sensitivity to detect abnormal erythrocyte deformability." Clinical Hemorheology 16(6): 749-752.
  67. Engstrom, K. G. and E. Lofvenberg (1998). "Treatment of myeloproliferative disorders with hydroxyurea: effects on red blood cell geometry and deformability." Blood 91(10): 3986-91.
  68. De Franceschi, L., N. Saadane, et al. (1994). "Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease." J Clin Invest 93(4): 1670-6.
  69. Peters, L. L., R. A. Shivdasani, et al. (1996). "Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton." Cell 86(6): 917-27.
  70. Nelson, M. T., H. Cheng, et al. (1995). "Relaxation of arterial smooth muscle by calcium sparks." Science 270(5236): 633-7.
  71. Stocker, M. (2004). "Ca(2+)-activated K+ channels: molecular determinants and function of the SK family." Nat Rev Neurosci 5(10): 758-70.
  72. Schreiber, M. and L. Salkoff (1997). "A novel calcium-sensing domain in the BK channel." Biophys J 73(3): 1355-63.
  73. Khanna, R., S. H. Chang, et al. (2002). "Headpiece domain of dematin is required for the stability of the erythrocyte membrane." Proc Natl Acad Sci U S A 99(10): 6637-42.
  74. Elliott, J. I. and C. F. Higgins (2003). "IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis." EMBO Rep 4(2): 189-94.
  75. Hodgkin, A. L. and A. F. Huxley (1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve." J Physiol 117(4): 500-44.
  76. Grygorczyk, R., W. Schwarz, et al. (1984). "Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes." Biophys J 45(4): 693-8.
  77. Hoffman, J. F., W. Joiner, et al. (2003). "The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells." Proc Natl Acad Sci U S A 100(12): 7366-71.
  78. Wulff, H., M. J. Miller, et al. (2000). "Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a ANH AN G
  79. Rust, M. B., S. L. Alper, et al. (2007). "Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice." J Clin Invest 117(6): 1708-17.
  80. De Franceschi, L., A. Rivera, et al. (2005). "Evidence for a protective role of the Gardos channel against hemolysis in murine spherocytosis." Blood 106(4): 1454-9.
  81. Tiffert, T., N. Daw, et al. (2007). "Age decline in the activity of the Ca2+- sensitive K+ channel of human red blood cells." J Gen Physiol 129(5): 429-36.
  82. Ishii, T. M., C. Silvia, et al. (1997). "A human intermediate conductance calcium-activated potassium channel." Proc Natl Acad Sci U S A 94(21): 11651-6.
  83. Mohandas, N. and P. G. Gallagher (2008). "Red cell membrane: past, present, and future." Blood 112(10): 3939-48.
  84. Coetzee, W. A., Y. Amarillo, et al. (1999). "Molecular diversity of K+ channels." Ann N Y Acad Sci 868: 233-85.
  85. Jacob, H. S. and J. H. Jandl (1964). "Increased Cell Membrane Permeability In The Pathogenesis Of Hereditary Spherocytosis." J Clin Invest 43: 1704-20.
  86. Heinz, A. and J. F. Hoffman (1990). "Membrane sidedness and the interaction of H+ and K+ on Ca2(+)-activated K+ transport in human red blood cells." Proc Natl Acad Sci U S A 87(5): 1998-2002.
  87. Joiner, W. J., L. Y. Wang, et al. (1997). "hSK4, a member of a novel subfamily of calcium-activated potassium channels." Proc Natl Acad Sci U S A 94(20): 11013-8.
  88. Doyle, D. A., J. Morais Cabral, et al. (1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity." Science 280(5360): 69-77.
  89. Jensen, B. S., D. Strobaek, et al. (1998). "Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel." Am J Physiol 275(3 Pt 1): C848-56.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten