Publikationsserver der Universitätsbibliothek Marburg

Titel:Komplexität der Transkriptionsregulation durch PPARβ/δ
Autor:Kaddatz, Kerstin
Weitere Beteiligte: Müller-Brüsselbach, Sabine (Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0567
URN: urn:nbn:de:hebis:04-z2010-05679
DOI: https://doi.org/10.17192/z2010.0567
DDC: Biowissenschaften, Biologie
Titel(trans.):Complexity of transcriptional regulation by PPARβ/δ
Publikationsdatum:2010-10-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
TGFβ, Transkriptionsregulation, ANGPTL4, ETS, ANGPTL4, Transcriptional regulation, PPAR, ETS, RUNX, SMAD, RUNX, PPAR, TGFβ, SMAD

Zusammenfassung:
Der „peroxisome proliferator activated receptor β/δ“ (PPARβ/δ) ist ein Liganden-induzierbarer Transkriptionsfaktor, der neben einer essentiellen Rolle im Lipidmetabolismus und der Energiehomöostase auch Funktionen bei der Regulation der Zelldifferenzierung, Proliferation und Apoptose besitzt. Im ersten Teil der vorliegenden Arbeit konnten anhand von Expressionsanalysen und ChIP-Sequenzierung drei Klassen von Zielgenen in humanen Myofibroblasten identifiziert werden. Gene der ersten Klasse werden durch PPARβ/δ reprimiert und durch Agonisten schnell und stark aktiviert. Die zweite Klasse von Genen zeigt keine Repression durch PPARβ/δ. Die Induktion erfolgt durch Agonisten deutlich schwächer und langsamer und die Expression wird stark durch Antagonisten reprimiert. Die dritte Klasse enthält Gene, deren Expression direkt mit dem PPARβ/δ-Niveau korreliert, wobei die Regulation liganden-unabhängig ist. Desweiteren erfolgt die Bindung von PPARβ/δ im Gegensatz zur Klasse I und II ohne nachweisbare „PPAR response elements“ (PPREs). Zusammenfassend erlauben diese Daten somit die Definition unterschiedlicher Klassen von PPARβ/δ-Zielgenen, die sich in den Mechanismen ihrer Regulation unterscheiden. PPARβ/δ spielt nicht nur eine Schlüsselrolle in der Regulation metabolischer Signalwege sondern moduliert zudem inflammatorische Prozesse und besitzt eine essentielle Funktion im Tumorstroma, was auf eine funktionelle Interaktion von PPARβ/δ und Zytokin-Signalwegen hinweist. Im zweiten Teil der Arbeit konnte mittels genomweiter Expressionsanalyse gezeigt werden, dass PPARβ/δ- und „transforming growth factor β“ (TGFβ)-Signalwege in humanen Myofibroblasten funktionell miteinander agieren. Eine Anzahl von Genen werden kooperativ durch TGFβ und PPARβ/δ aktiviert. Für das Modellgen „angiopoeitin-like 4“ (ANGPTL4) konnten zwei Enhancer Regionen identifiziert werden, die für die synergistische Aktivierung verantwortlich sind. Ein TGFβ-induzierbarer, stromaufwärts vom Transkriptionsstart (TS) gelegener Enhancer (ca. -8,5 kb relativ zum TS) wird durch einen Mechanismus reguliert, der SMAD3, ETS1, RUNX2 und AP-1 Transkriptionsfaktoren einbezieht, welche mit mehreren benachbarten Bindestellen interagieren. Ein zweiter Enhancer (PPAR-E), der aus drei nebeneinander liegenden PPREs besteht, befindet sich im Intron 3 des ANGPTL4-Gens (ca. +3,5 kb relativ zum TS). Der PPAR-E wird durch alle drei PPAR-Subtypen stark aktiviert, wobei ein neuartiges PPRE Motiv eine zentrale Rolle einnimmt. Obwohl der PPAR-E nicht durch TGFβ reguliert wird, interagiert diese Region mit SMAD3, ETS1, RUNX2 und AP-1 in vivo, was eine mögliche mechanistische Erklärung für den beobachteten Synergismus liefert.

Summary:
Peroxisome-proliferator activated receptor β/δ (PPARβ/δ) is a ligand-inducible transcription factor that plays an essential role in lipid metabolism and energy homoeostasis and has been connected to different cellular processes like differentiation, proliferation and apoptosis. In the first part of the thesis, three different classes of target genes were identified in human myofibroblasts by expression profiling and genome-wide chromatin immunoprecipitation analysis (ChIP-sequencing). Class I genes are repressed by PPARβ/δ and show strong and rapid induction by specific agonists. Class II genes exhibit no PPARβ/δ-mediated repression. Their induction by agonists is comparably weak and slower, and their expression is strongly repressed by antagonists. The third class encompasses genes whose expression is ligand-independent, but correlates with PPARβ/δ levels. Surprisingly, PPARβ/δ binding of class III genes occurs in the absence of detectable PPAR response elements (PPREs). Taken together, these analyses led to the definition of different classes of target genes that are distinguished by their mechanism of regulation. PPARβ/δ does not only play a key role in the regulation of metabolic pathways, but also modulates inflammatory processes and has essential functions in tumor stroma, indicating a functional interaction between PPARβ/δ and cytokine signaling. In the second part of this thesis, transcriptional profiling of human myofibroblasts revealed a functional interaction of PPARβ/δ and transforming growth factor β (TGFβ) signaling pathways, and showed that a subset of genes are cooperatively activated by TGFβ and PPARβ/δ. Two different enhancer regions mediating synergistic activation were identified in the angiopoetin-like 4 (ANGPTL4) gene, which was used as a model. A TGFβ responsive enhancer located ∼8.5 kb upstream of the transcriptional start site (TSS) is regulated by a mechanism involving SMAD3, ETS1, RUNX2 and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E), consisting of three adjacent PPREs, is located in the third intron ∼3.5 kb downstream of the TSS. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPRE motif playing a central role. Although the PPAR-E is not regulated by TGFβ, it interacts with SMAD3, ETS1, RUNX2 and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism.

Bibliographie / References

  1. Zhang, Y. E. (2009). "Non- ‐Smad pathways in TGF- ‐beta signaling." Cell Res 19(1): 128- ‐39.
  2. Moserle, L., A. Amadori, et al. (2009). "The angiogenic switch: implications in the regulation of tumor dormancy." Curr Mol Med 9(8): 935- ‐41.
  3. Naruhn, S., W. Meissner, et al. (2010). "15- ‐hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator- ‐activated receptor beta/delta agonist." Mol Pharmacol 77(2): 171- ‐84.
  4. Wurtz, J. M., W. Bourguet, et al. (1996). "A canonical structure for the ligand- ‐binding domain of nuclear receptors." Nat Struct Biol 3(2): 206.
  5. Yagi, K., D. Goto, et al. (1999). "Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild- ‐type Smad2 and Smad3." J Biol Chem 274(2): 703- ‐9. Yakymovych, I., P. Ten Dijke, et al. (2001). "Regulation of Smad signaling by protein kinase C." FASEB J 15(3): 553- ‐5.
  6. Xie, X. Q., E. Pardali, et al. (1999). "AML and Ets proteins regulate the I alpha1 germ- ‐line promoter." Eur J Immunol 29(2): 488- ‐98.
  7. Zhang, H., H. O. Akman, et al. (2003). "Cellular response to hypoxia involves signaling via Smad proteins." Blood 101(6): 2253- ‐60.
  8. Zhu, Y., C. Qi, et al. (1996). "Cloning and identification of mouse steroid receptor coactivator- ‐1 (mSRC- ‐1), as a coactivator of peroxisome proliferator- ‐activated receptor gamma." Gene Expr 6(3): 185- ‐95.
  9. Müller- ‐Brüsselbach, S., M. Kömhoff, et al. (2007). "Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta- ‐deficient mice." Embo J 26(15): 3686- ‐98.
  10. Till Adhikary*, Florian Finkernagel*, Kerstin Kaddatz*, Anne Grahovac, Josefine Stockert, Olesja Popow, Wolfgang Meißner, Maren Scharfe, Michael Jarek, Helmut Blöcker, Sabine Müller-Brüsselbach and Rolf Müller Genome-wide analyses define different classes of PPARβ/δ target genes characterized by distinct modes of transcriptional regulation. (Manuskript in Vorbereitung)
  11. Massague, J. (2000). "How cells read TGF- ‐beta signals." Nat Rev Mol Cell Biol 1(3): 169- ‐ 78.
  12. Zawel, L., J. L. Dai, et al. (1998). "Human Smad3 and Smad4 are sequence- ‐specific transcription activators." Mol Cell 1(4): 611- ‐7.
  13. Zhu, Y., C. Qi, et al. (1997). "Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator- ‐activated receptor." J Biol Chem 272(41): 25500- ‐6.
  14. Xu, H. E., M. H. Lambert, et al. (1999). "Molecular recognition of fatty acids by peroxisome proliferator- ‐activated receptors." Mol Cell 3(3): 397- ‐403.
  15. Moustakas, A. and C. H. Heldin (2005). "Non- ‐Smad TGF- ‐beta signals." J Cell Sci 118(Pt 16): 3573- ‐84.
  16. Moraes, L. A., L. Piqueras, et al. (2006). "Peroxisome proliferator- ‐activated receptors and inflammation." Pharmacol Ther 110(3): 371- ‐85.
  17. Martens, J. A. and F. Winston (2003). "Recent advances in understanding chromatin remodeling by Swi/Snf complexes." Curr Opin Genet Dev 13(2): 136- ‐42.
  18. Zhang, Y., X. Feng, et al. (1996). "Receptor- ‐associated Mad homologues synergize as effectors of the TGF- ‐beta response." Nature 383(6596): 168- ‐72.
  19. Massague, J. (1992). "Receptors for the TGF- ‐beta family." Cell 69(7): 1067- ‐70.
  20. Müller, R., M. Rieck, et al. (2008). "Regulation of Cell Proliferation and Differentiation by PPARbeta/delta." PPAR Res 2008: 614852.
  21. Nawa, T., M. T. Nawa, et al. (2000). "Repression of TNF- ‐alpha- ‐induced E- ‐selectin expression by PPAR activators: involvement of transcriptional repressor LRF- ‐ 1/ATF3." Biochem Biophys Res Commun 275(2): 406- ‐11. Nolte, R. T., 29- ‐ 39.
  22. Kerstin Kaddatz, Till Adhikary, Florian Finkernagel, Wolfgang Meissner, Sabine Müller- Brüsselbach and Rolf Müller Transcriptional profiling identifies functional interactions of TGF-β and PPARβ/δ signaling: synergistic induction of ANGPTL4 transcription. (eingereicht 2010)
  23. Xu, L., Y. Kang, et al. (2002). "Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus." Mol Cell 10(2): 271- ‐82.
  24. Zhang, Y., X. H. Feng, et al. (1998). "Smad3 and Smad4 cooperate with c- ‐Jun/c- ‐Fos to mediate TGF- ‐beta- ‐induced transcription." Nature 394(6696): 909- ‐13.
  25. Moustakas, A., S. Souchelnytskyi, et al. (2001). "Smad regulation in TGF- ‐beta signal transduction." J Cell Sci 114(Pt 24): 4359- ‐69.
  26. Massague, J., J. Seoane, et al. (2005). "Smad transcription factors." Genes Dev 19(23): 2783- ‐810.
  27. Kreutzer M*, Fauti T*, Kaddatz K, Seifart C, Neubauer A, Schweer H, Kömhoff M, Müller- Brüsselbach S, Müller R. Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells. Oncol Rep. 2007 Aug;18(2):497-501.
  28. Molnar, F., M. Matilainen, et al. (2005). "Structural determinants of the agonist- ‐ independent association of human peroxisome proliferator- ‐activated receptors with coactivators." J Biol Chem 280(28): 26543- ‐56.
  29. Massague, J. (2008). "TGFbeta in Cancer." Cell 134(2): 215- ‐30.
  30. Massague, J. (1998). "TGF- ‐beta signal transduction." Annu Rev Biochem 67: 753- ‐91.
  31. Mizukami, J. and T. Taniguchi (1997). "The antidiabetic agent thiazolidinedione stimulates the interaction between PPAR gamma and CBP." Biochem Biophys Res Commun 240(1): 61- ‐4.
  32. Michalik, L., V. Zoete, et al. (2007). "Combined simulation and mutagenesis analyses reveal the involvement of key residues for peroxisome proliferator- ‐activated receptor alpha helix 12 dynamic behavior." J Biol Chem 282(13): 9666- ‐77.
  33. Nakao, A., T. Imamura, et al. (1997). "TGF- ‐beta receptor- ‐mediated signalling through Smad2, Smad3 and Smad4." EMBO J 16(17): 5353- ‐62.
  34. Melnikova, I. N., B. E. Crute, et al. (1993). "Sequence specificity of the core- ‐binding factor." J Virol 67(4): 2408- ‐11.
  35. Xiao, L., J. N. Rao, et al. (2010). "Induced ATF- ‐2 represses CDK4 transcription through dimerization with JunD inhibiting intestinal epithelial cell growth after polyamine depletion." Am J Physiol Cell Physiol 298(5): C1226- ‐34.
  36. Xu, H. E., M. H. Lambert, et al. (2001). "Structural determinants of ligand binding selectivity between the peroxisome proliferator- ‐activated receptors." Proc Natl Acad Sci U S A 98(24): 13919- ‐24.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten