Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur Expression und Lokalisationen des Cryptochrom3 in Arabidopsis thaliana
Autor:Sommer, Julia
Weitere Beteiligte: Batschauer, Alfred (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0464
URN: urn:nbn:de:hebis:04-z2010-04644
DOI: https://doi.org/10.17192/z2010.0464
DDC: Biowissenschaften, Biologie
Titel (trans.):Investigation of the expression and localization of cryptochrome3 in Arabidopsis thaliana
Publikationsdatum:2010-08-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Photorezeptor, Ackerschmalwand, Cryptochrome DASH, Cryptochrom, Arabidopsis thaliana

Zusammenfassung:
In dieser Arbeit wurden grundlegende Eigenschaften des Cryptochroms 3 in Arabidopsis thaliana untersucht. Dieser Blaulichtrezpetor gehört zur Familie der DASH-Cryptochrome. Es wurde die Expression von cry3 in verschiedenen Organen bzw. Geweben von Arabidopsis thaliana auf RNA und Proteinebene untersucht, um daraus Rückschlüsse auf die Funktion von cry3 ziehen zu können. Durch Generierung transgener Pflanzen, die cry3-GFP exprimieren, wurde die Organellen-Lokalisation des Proteins auch in intatkten transgenen Linien nachgewiesen. Ferner wurden Pflanzenlinien etabliert, in denen das Protein nur in Mitochondrien- bzw. nur in Chloroplasten lokalisiert ist, um diese Linien dann phänotypisch mit dem Wildtyp vergleichen zu können, in dem cry3 in beiden Organellen lokalisiert. Anhand transienter Expression des cry3-GFP Fusionsproteins wurde eine mögliche lichtabhängige Lokalisation in den Chloroplasten untersucht. Die N-terminale α-Helix von cry3 wurde auf eine mögliche regulatorische Funktion für den Import in die Chloroplasten hin untersucht. Dies wurde anhand transienter Expression in Protoplasten nicht bestätigt. Darüberhinaus konnte eine bisher für DASH Cryptochrome unbekannte Lokalisation im Nucleolus gezeigt werden.

Bibliographie / References

  1. Kleine, T. (2003) Photolyase/Cryptochrom-Homologe aus Synechocystis sp. PCC 6803 und Arabidopsis thaliana: Funktion, Lokalisation und biochemische Eigenschaften. Dissertation.
  2. Reisbacher, S. (2009) Funktionelle Analyse von Cryptochrom 3 aus Arabidopsis thaliana. Fachbereich Biologie Marburg: Philipps-Universität. Dissertation.
  3. Kim, S.H., Koroleva, O.A., Lewandowska, D., Pendle, A.F., Clark, G.P., Simpson, C.G., Shaw, P.J. und Brown, J.W. (2009) Aberrant mRNA transcripts and the nonsense- mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell, 21, 2045-2057.
  4. Osterlund, M.T. und Deng, X.W. (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J, 16, 201-208.
  5. Ulm, R., Baumann, A., Oravecz, A., Mate, Z., Adam, E., Oakeley, E.J., Schafer, E. und Nagy, F. (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A, 101, 1397-1402. LITERATUR 106
  6. Macara, I.G. (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev, 65, 570-594, table of contents.
  7. Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H. und Shinomura, T. (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 17, 3311-3325.
  8. Kim, S.H., Ryabov, E.V., Kalinina, N.O., Rakitina, D.V., Gillespie, T., MacFarlane, S., Haupt, S., Brown, J.W. und Taliansky, M. (2007a) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J, 26, 2169-2179.
  9. Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M. und Hall, J.C. (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell, 95, 681-692.
  10. Klar, T., Pokorny, R., Moldt, J., Batschauer, A., Essen, L.O. (2007) Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J Mol Biol, 3,954-64.
  11. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y. und Cashmore, A.R. (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell, 103, 815-827.
  12. Park, H.W., Kim, S.T., Sancar, A. und Deisenhofer, J. (1995) Crystal structure of DNA photolyase from Escherichia coli. Science, 268, 1866-1872.
  13. Lin, C. und Shalitin, D. (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 54, 469-496.
  14. Klar, T., Kaiser, G., Hennecke, U., Carell, T., Batschauer, A. und Essen, L.O. (2006) Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. Chembiochem, 7, 1798-1806.
  15. Wiltschko, W. und Wiltschko, R. (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 191, 675-693.
  16. Komori, H., Masui, R., Kuramitsu, S., Yokoyama, S., Shibata, T., Inoue, Y. und Miki, K. (2001) Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci U S A, 98, 13560-13565.
  17. Waterworth, W.M., Jiang, Q., West, C.E., Nikaido, M. und Bray, C.M. (2002) Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation. J Exp Bot, 53, 1005-1015.
  18. Rosenfeldt, G., R., M.V., A.G., v.A., H.D., M. und A., B. (2008) Chemically induced and light-independent cryptochrome photoreceptor activation. Molecular Plant, , 1,, 4-14.
  19. Oyama, T., Shimura, Y. und Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev, 11, 2983-2995.
  20. Mees, A., Klar, T., Gnau, P., Hennecke, U., Eker, A.P., Carell, T. und Essen, L.O. (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science, 306, 1789-1793.
  21. Jiang, Z., Swem, L.R., Rushing, B.G., Devanathan, S., Tollin, G. und Bauer, C.E. (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science, 285, 406-409.
  22. Partch, C.L. und Sancar, A. (2005) Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol, 81, 1291- 1304.
  23. Turck, F., Fornara, F. und Coupland, G. (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol, 59, 573-594.
  24. Nagy, F., Kircher, S. und Schafer, E. (2001) Intracellular trafficking of photoreceptors during light-induced signal transduction in plants. J Cell Sci, 114, 475-480.
  25. Sambrook, J., Fritsch, E.F. und Maniatis, T. (1989 ) Molecular cloning: A laboratory manual. , 2nd edn. NY, USA: Cold Spring Harbor Laboratory Press, .
  26. Yeh, K.C., Wu, S.H., Murphy, J.T. und Lagarias, J.C. (1997) A cyanobacterial phytochrome two-component light sensory system. Science, 277, 1505-1508.
  27. Oka, Y. Matsushita, T., Mochizuki, N., Suzuki, T., Tokutomi, S., Nagatani, A., (2004) A Functional Analysis of a 450-amino Acid N-terminal fragment of phytochrome B in Arabidopsis. Plant Cell, 16, 2104-2116.
  28. Nakai, K. und Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 14, 897-911.
  29. Mein besonderer Dank gilt Herrn Prof. Dr. Alfred Batschauer für die interessante und herausfordernde Aufgabenstellung und die immer gewährte Unterstützung, die in vielfältiger Form den Fortgang dieser Arbeit begleitet hat.
  30. Ritz, T., Adem, S. und Schulten, K. (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J, 78, 707-718.
  31. Suesslin, C. und Frohnmeyer, H. (2003) An Arabidopsis mutant defective in UV-B light- mediated responses. Plant J, 33, 591-601.
  32. Kleine, T., Lockhart, P. und Batschauer, A. (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J, 35, 93-103.
  33. Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Res, 29, e45.
  34. Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Sato, K. und Nomura, T. (1993) A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature, 361, 371-374.
  35. Yanovsky, M.J., Mazzella, M.A. und Casal, J.J. (2000) A quadruple photoreceptor mutant still keeps track of time. Curr Biol, 10, 1013-1015.
  36. Weigel, D. und Glazebrook, J. (2001) Arabidopsis: A Laboratory Manual. New York: Cold Spring Harbor Laboratory.
  37. Motchoulski, A. und Liscum, E. (1999) Arabidopsis NPH3: A NPH1 photoreceptor- interacting protein essential for phototropism. Science, 286, 961-964.
  38. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K. und Wada, M. (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138-2141.
  39. Ramakers, C., Ruijter, J.M., Deprez, R.H. und Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett, 339, 62-66.
  40. Salomon, M., Zacherl, M. und Rudiger, W. (1997b) Asymmetric, blue light-dependent phosphorylation of a 116-kilodalton plasma membrane protein can be correlated with the first-and second-positive phototropic curvature of oat coleoptiles. Plant Physiol, 115, 485- 491.
  41. Lin, C. (2002) Blue light receptors und signal transduction. Plant Cell, 14, S207-225.
  42. Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M. und Wada, M. (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature, 420, 829-832.
  43. Nickelsen, J. (2003) Chloroplast RNA-binding proteins. Curr Genet, 43, 392-399.
  44. Schwacke, R., Fischer, K., Ketelsen, B., Krupinska, K. und Krause, K. (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics, 277, 631-646.
  45. Li Q.-H, Yang,H-Q. (2007)Cryptochrome Signaling in Plants Photochem Photobiol, 83, 94– 101.
  46. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y. und Deng, X.W. (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 294, 154- 158.
  47. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. und Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350-1354.
  48. Rogers, S.O. und Bendich, A.J. (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol., 5, 69-76.
  49. Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H. und Yang, H.Q. (2005) From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A, 102, 12270-12275.
  50. Zimmermann, P., Hennig, L. und Gruissem, W. (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci, 10, 407-409.
  51. Jefferson, A., Tony, A., Kavanagh, A.T. und Bevan, M.W. (1987) GUS fusions: ,B- glucuronidase as a sensitive and versatile genefusion marker in higher plants. EMBO J, 6, 3901-3907.
  52. Kim, Y.-M., Woo, J.-C., Song, P.-S. und Soh, M.-S. (2002) HFR1, a phytochrome A- signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant Journal, 30, 711-719.
  53. Park, C.M., Bhoo, S.H. und Song, P.S. (2000) Inter-domain crosstalk in the phytochrome molecules. Semin Cell Dev Biol, 11, 449-456.
  54. Zikihara, K., Ishikawa, T., Todo, T. und Tokutomi, S. (2008) Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH. Photochem Photobiol, 84, 1016-1023.
  55. Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J., Austin-Phillips, S. und Quail, P.H. (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell, 15, 1962-1980.
  56. Nagatani, A., Reed, J.W. und Chory, J. (1993) Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol, 102, 269-277.
  57. Zeugner, A., Byrdin, M., Bouly, J.P., Bakrim, N., Giovani, B., Brettel, K. und Ahmad, M. (2005) Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem, 280, 19437-19440.
  58. Rebeille, F., Jabrin, S., Bligny, R., Loizeau, K., Gambonnet, B., Van Wilder, V., Douce, R. und Ravanel, S. (2006) Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc Natl Acad Sci U S A, 103, 15687-15692.
  59. Wiedemann, N., Frazier, A.E. und Pfanner, N. (2004) Minireview: The Protein Import Machinery of Mitochondria. J Biol Chem, 279, 14473–14476.
  60. Kanai, S., Kikuno, R., Toh, H., Ryo, H. und Todo, T. (1997) Molecular evolution of the photolyase-blue-light photoreceptor family. J Mol Evol, 45, 535-548.
  61. Kang, B., Grancher, N., Koyffmann, V., Lardemer, D., Burney, S. und Ahmad, M. (2008) Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta, 227, 1091-1099.
  62. Kleiner, O., Kircher, S., Harter, K. und Batschauer, A. (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J, 19, 289-296.
  63. Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D. und Lin, C. (2008) Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis. Science, 322, 1533-1539.
  64. Quail, P.H. (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 3, 85-93. LITERATUR 103
  65. Somers, D.E., Devlin, P.F. und Kay, S.A. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 282, 1488-1490.
  66. Phytochromes: photosensory perception and signal transduction. Science, 268, 675-680.
  67. Lariguet, P. und Dunand, C. (2005) Plant photoreceptors: phylogenetic overview. J Mol Evol, 61, 559-569.
  68. Worthington, E.N., Kavakli, I.H., Berrocal-Tito, G., Bondo, B.E. und Sancar, A. (2003) Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae. J Biol Chem, 278, 39143-39154.
  69. Nakasako, M., Masuoka, D., Zikihara, K. und Tokutomi, S. (2005) Quarternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein. FEBS Letters, 579, 1067- 1071.
  70. Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C. und Lin, C (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light dependent phosphorylation. Nature, 417, 763-767.
  71. Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.C., Dolan, S. und Lin, C. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A, 100, 2140-2145. LITERATUR 101
  72. Kawai, H., Kanegae, T., Christensen, S., Kiyosue, T., Sato, Y., Imaizumi, T., Kadota, A. und Wada, M. (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature, 421, 287-290.
  73. Tong, H., Leasure, C.D., Hou, X., Yuen, G., Briggs, W. und He, Z.H. (2008) Role of root UV-B sensing in Arabidopsis early seedling development. Proc Natl Acad Sci U S A, 105, 21039-21044.
  74. Partch, C.L., Clarkson, M.W., Özgür, S., Lee, A.,L., und Sancar, A. (2005) Role of Structural Plasticity in Signal Transduction by the Cryptochrome Blue-Light Photoreceptor Biochem, 44, 3795-3805
  75. Kehoe, D.M. und Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science, 273, 1409-1412.
  76. Müller, M. und Carell, T. (2009) Structural biology of DNA photolyases and cryptochromes.
  77. Öztürk, N., Song, S.-H., Özgür, S., Selby, P.-S., Morrison, L., Partch, C., Zhong, D. und Sancar, A. (2008) Structure and Function of Animal Cryptochromes. Cold Spring Harb Symp Quant Biol, 72, 119-131
  78. Sancar, A. (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev, 103, 2203-2237.
  79. Raska, I., Shaw, P.J. und Cmarko, D. (2006) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol, 18, 325-334.
  80. Mullis, K.B. (1990) Target amplification for DNA analysis by the polymerase chain reaction. Ann Biol Clin (Paris), 48, 579-582.
  81. Mas, P., Kim, W.Y., Somers, D.E. und Kay, S.A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 426, 567-570.
  82. Putterill, J., Robson, F., Lee, K., Simon, R. und Coupland, G. (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847-857.
  83. Lin, C. und Todo, T. (2005) The cryptochromes. Genome Biol, 6, 220.
  84. Leung, A.K. und Lamond, A.I. (2003) The dynamics of the nucleolus. Crit Rev Eukaryot Gene Expr, 13, 39-54.
  85. Lo, S.J., Lee, C.C. und Lai, H.J. (2006) The nucleolus: reviewing oldies to have new understandings. Cell Res, 16, 530-538.
  86. Mancinelli, A. (1994) The physiology of phytochrome action. In Photoporphogenesis in Plants (Kendrick RE, K.G., ed. Dordrecht,: Kluwer Academic Publishers, pp. 211-269.)
  87. Koncz, C. und Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a nove1 type of Agrobacterium binary vector. Gen. Genet., 204, 383-396.
  88. Mochizuki, T., Onda, Y., Fujiwara, E., Wada, M. und Toyoshima, Y. (2004) Two independent light signals cooperate in the activation of the plastid psbD blue light- responsive promoter in Arabidopsis. FEBS Lett, 571, 26-30.
  89. Savenstrand, H., Brosche, M. und Strid, A. (2004) Ultraviolet-B signalling: Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence gene expression. Plant Physiol Biochem, 42, 687-694.
  90. Kim, B.C., Tennessen, D.J. und Last, R.L. (1998) UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J, 15, 667-674.
  91. Vielen Dank an Agnes Damm für die engagierte Pflege und Kultivierung der Arabidopsis thaliana Pflanzen und Zellkulturen, ohne die diese Arbeit nicht möglich gewesen wäre.
  92. Salomon, M., Christie, J.M., Knieb, E., Lempert, U. und Briggs, W.R. (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39, 9401-9410. LITERATUR 104
  93. Peeters, N. und Small, I. (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta, 1541, 54-63.
  94. Yang, J., Lin, R., Sullivan, S., Hoecker, U., Liu, B., Xu, L., Deng, X.W., und Wang, H. (2005) Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis. Plant Cell, 17, 804-821.
  95. Somers, D.E. (2001) Clock-associated genes in Arabidopsis: a family affair. Philos Trans R Soc Lond B Biol Sci, 356, 1745-1753. LITERATUR 105
  96. Sang, Y., Li, Q.H., Rubio, V., Zhang, Y.C., Mao, J., Deng, X.W. und Yang, H.Q. (2005) N- terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell, 17, 1569-1584.
  97. Suetsugu, N., Mittmann, F., Wagner, G., Hughes, J. und Wada, M. (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci U S A, 102, 13705-13709.
  98. Sakai, T., Wada, T., Ishiguro, S. und Okada, K. (2000) RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 12, 225-236.
  99. Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trevisan, M., Kami, C., de Carbonnel, M., Alonso, J.M., Ecker, J.R., Liscum, E. und Fankhauser, C. (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci U S A, 103, 10134-10139.
  100. Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schafer, E. und Nagy, F. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 14, 1541-1555. LITERATUR 99
  101. Osterlund, M.T., Wei, N. und Deng, X.W. (2000) The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol, 124, 1520-1524. LITERATUR 102
  102. Liscum, E. und Briggs, W.R. (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 112, 291-296.
  103. Smith, H., Xu, Y. und Quail, P.H. (1997) Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol, 114, 637-641.
  104. Salomon, M., Zacherl, M., Luff, L. und Rudiger, W. (1997a) Exposure of oat seedlings to blue light results in amplified phosphorylation of the putative photoreceptor for phototropism and in higher sensitivity of the plants to phototropic stimulation. Plant Physiol, 115, 493-500.
  105. Somers, D.E., Sharrock, R.A., Tepperman, J.M. und Quail, P.H. (1991) The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell, 3, 1263-1274.
  106. Liscum, E. und Briggs, W.R. (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7, 473-485.
  107. Møller, S.G., Kim, Y.-S., Kunkel, T. und Chua, N.-H (2003) PP7 Is a Positive Regulator of Blue Light Signaling in Arabidopsis. Plant Cell, 15, 1111 – 1119.
  108. Whippo, C.W. und Hangarter, R.P. (2003) Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol, 132, 1499- 1507.
  109. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J. und Cashmore, A.R. (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.
  110. Rösler,J., Klein, I., Zeidler, M. (2007) Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. PNAS, 104, 10737-10742.
  111. Shalitin, D., Yu, X., Maymon, M., Mockler, T., Lin, C. (2003) Blue Light–Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1. Plant Cell, 10, 2421–2429.
  112. Wu, G. und Spalding, E.P. (2007) Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci U S A, 104, 18813-18818.
  113. Tsai, R.Y. und McKay, R.D. (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol, 168, 179-184.
  114. Misteli, T. (2005) Going in GTP cycles in the nucleolus. J Cell Biol, 168, 177-178.
  115. Zhang, X.N., Wu, Y., Tobias, J.W., Brunk, B.P., Deitzer, G.F. und Liu, D (2008) HFR1 Is Crucial for Transcriptome Regulation in the Cryptochrome 1-Mediated Early Response to Blue Light in Arabidopsis thaliana. PLoS One, 3, e3563. LITERATUR 107
  116. Öztürk, N., Lee, J.H., Gaddameedhi, S. und Sancar, A. (2009) Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci U S A, 106, 2841-2846.
  117. Rockwell, N.C., Su, Y.S. und Lagarias, J.C. (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 57, 837-858.
  118. Julia Moldt, J., Pokorny, R., Orth, C., Linne, U., Geisselbrecht, Y., Marahiel, M.-A., Essen, L.-O. und Batschauer, A. (2009) Photoreduction of the folate cofactor in members of the photolyase family. JBC, 284, 21670-21683
  119. Nozue, K., Kanegae, T., Imaizumi, T., Fukuda, S., Okamoto, H., Yeh, K.C., Lagarias, J.C. und Wada, M. (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci U S A, 95, 15826-15830.
  120. Nagy, F. und Schafer, E. (2000) Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J, 19, 157-163.
  121. Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K., Harper, R.M., Liscum, E. und Yamamoto, K.T. (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 16, 379-393.
  122. Stowe-Evans, E.L., Harper, R.M., Motchoulski, A.V. und Liscum, E. (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol, 118, 1265-1275.
  123. Sawa, M., Nusinow, D.A., Kay, S.A. und Imaizumi, T. (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 318, 261-265.
  124. Sancar, A., Franklin, K.A. und Sancar, G.B. (1984) Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc Natl Acad Sci U S A, 81, 7397-7401.
  125. Pendle, A.F., Clark, G.P., Boon, R., Lewandowska, D., Lam, Y.W., Andersen, J., Mann, M., Lamond, A.I., Brown, J.W. und Shaw, P.J. (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell, 16, 260-269.
  126. Selby, C.P. und Sancar, A. (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A, 103, 17696- 17700.
  127. Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A. and Essen, L.O. (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci U S A, 105, 21023-21027.
  128. Rodgers, C.T. und Hore, P.J. (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A, 106, 353-360.
  129. Song, S.H., Dick, B., Penzkofer, A., Pokorny, R., Batschauer, A. und Essen, L.O. (2006) Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J Photochem Photobiol B, 85, 1-16.
  130. Kottke, T., Batschauer, A., Ahmad, M. und Heberle, J. (2006) Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry, 45, 2472-2479.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten