Publikationsserver der Universitätsbibliothek Marburg

Titel:Zellbiologische und biochemische Charakterisierung des Ustilago maydis Virulenzfaktors Mcs1(Myosin-Chitinsynthase 1)
Autor:Treitschke, Steffi
Weitere Beteiligte: Steinberg, Gero (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0457
URN: urn:nbn:de:hebis:04-z2010-04576
DOI: https://doi.org/10.17192/z2010.0457
DDC: Biowissenschaften, Biologie
Titel (trans.):Functional characterization of the Ustilago maydis virulence factor Mcs1 (myosin-chitin synthase 1)
Publikationsdatum:2010-07-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Pathogenicity, Myosin, Fungal cell wall, Myosin-chitin synthase, Chitinsynthase, Ustilago maydis, Zellwand, Ustilago maydis, Myosin-Chitinsynthase, Myosin, Pathogenität

Zusammenfassung:
Infektionen von Wirtspflanzen durch pathogene Pilze erfordert polares Spitzenwachstum, ein Prozess, der die kontinuierliche polare Anlieferung von Zellwandkomponenten und Enzymen, wie Chitinsynthasen (CHS), entlang des Cytoskeletts benötigt. Klasse V CHS sind als Virulenzfaktoren für die pathogene Entwicklung essentiell. Diese potentiellen molekularen Motoren bestehen aus einer Myosin-Motordomäne (MMD), die mit einer CHS-Domäne fusioniert sind. Letztere ist am Aufbau der pilzlichen Zellwand beteiligt, die Rolle der MMD bleibt bisher ungeklärt. Eine nahe liegende Rolle könnte die MMD-vermittelte Anlieferung sekretorischer Vesikel (Chitosomen) zur Wachstumszone sein. In der vorliegenden Arbeit wurde der Einfluss beider Domänen in Mcs1, der Klasse V CHS in U. maydis, untersucht. Durch quantitative Analysen von Krankheitssymptomen, Besiedlung der Pflanze und Auswertungen morphometrischer Parameter wurde gezeigt, dass beide Domänen essentielle, jedoch ungleiche Rollen, für die pathogene Entwicklung von U. maydis spielen. Während der Phänotyp der G3Mcs1Chsdead-Mutante dem der Deletionsmutante ähnelt, konnte die Besiedelung des Pflanzengewebes durch Stämme, die Defekte in der Motordomäne aufwiesen, noch teilweise erfolgen. mcs1-Deletionsmutanten und CHS-aktivitätsdefekte Stämme werden schnell durch das pflanzliche Abwehrsystem erkannt und getötet. Mutanten bei denen die MMD deletiert wurden verursachen nur eine abgeschwächte Abwehrreaktion. Der Verlust der Klasse V CHS Aktivität führt vermutlich zu gravierenden Mängeln in der Zellwandzusammensetzung, wodurch polares in planta Wachstum gestört und der Infektionsprozess verlangsamt wird. Eine Folge dessen ist eine starke pflanzliche Abwehrreaktion, die durch die Bildung von H2O2 und lokalem Zelltod charakterisiert ist. Mikroskopische Untersuchungen zeigten, dass die apikale Mcs1-Lokalisierung von der eigenen MMD abhängt. Jedoch wurde auch beobachtet, dass noch wenige Chitosomen die Plasmamembran erreichen. Dadurch kann intrazelluläres Hyphenwachstum in begrenztem Maße erfolgen und U. maydis kann die Pflanzenzelle besiedeln. Eine Strukturanalyse verdeutlichte, dass trotz geringer Sequenzidentitäten die Mcs1 MMD der Struktur veröffentlichter Myosinmotoren ähnelt. Des Weiteren konnte belegt werden, dass die Mcs1 MMD an Aktin bindet und in der Lage ist Dimere auszubilden. In in vivo Motilitätsversuche wurde nachgewiesen, dass sich Mcs1-gebundende Chitosomen schnell und bi-direktional über lange Strecken bewegen und kurz bevor sie sekretiert werden in subapikalen Bereichen der Plasmamembran verharren. Die Insertion in die Membran erfolgt dabei selten und zufällig und es wurde gezeigt, dass die Verweildauer am Apex bei MMD-defizienten Mutanten signifikant verkürzt war. Wohingegen die apikale Mcs1-Akkumulation von F-Aktin und der eigenen MMD abhängt, spielen bei der Motilität von Chitosomen sowohl Aktin als auch Mikrotubuli eine Rolle und ist nicht abhängig von der MMD. Diese Ergebnisse zeigen deutlich, dass die eigene MMD nicht für die apikale Anlieferung verantwortlich ist, sondern eher lokale Funktionen in der Exozytose von Chitosomen übernimmt.

Bibliographie / References

  1. Neuhaus EM, Soldati T (2000) A myosin I is involved in membrane recycling from early endosomes.
  2. Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103: 3681-3686
  3. Lee WL, Bezanilla M, Pollard TD (2000) Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol 151: 789-800
  4. Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14: 642-657
  5. Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16: 1961-1970
  6. Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K, Ushiki T, Sato O, Ikebe M, Igarashi M (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16: 4519-4530
  7. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268: 661-667
  8. Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527-533
  9. Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. The Plant cell 19: 2293-2309
  10. Gillissen B, Bergemann J, Sandmann C, Schröer B, Bölker M, Kahmann R (1992) A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68: 647-657
  11. Park H, Ramamurthy B, Travaglia M, Safer D, Chen LQ, Franzini-Armstrong C, Selvin PR, Sweeney HL (2006) Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell 21: 331-336
  12. Steinberg G, Perez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18: 61-67
  13. Nürnberger T, Brunner F (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5: 318-324
  14. Loubradou G, Brachmann A, Feldbrugge M, Kahmann R (2001) A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis. Mol Microbiol 40: 719-730
  15. Johnston GC, Prendergast JA, Singer RA (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 113: 539-551
  16. Schuchardt I, Assmann D, Thines E, Schuberth C, Steinberg G (2005) Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol Biol Cell 16: 5191-5201
  17. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245
  18. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849-850
  19. Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995a) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. J Biol Chem 270: 13961-13967
  20. Weber I, Gruber C, Steinberg G (2003) A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15: 2826-2842
  21. Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, Vranes M, Kamper J, Kahmann R (2009) Physical-chemical plant-derived signals induce differentiation in Ustilago maydis.
  22. Steinberg G (2007b) Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. New Phytol 174: 721-733
  23. Rogat AD, Miller KG (2002) A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis. J Cell Sci 115: 4855-4865
  24. Rudolf R, Kogel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JA, 3rd, Gerdes HH (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116: 1339-1348
  25. Zhao Y, Park RD, Muzzarelli RA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8: 24-46
  26. Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwane A, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M (2002) Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun 290: 311-317
  27. Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256: 419-426
  28. Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41: 367-378
  29. O'Connell RJ, Panstruga R (2006) Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171: 699-718
  30. Liu H, Kauffman S, Becker JM, Szaniszlo PJ (2004) Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot Cell 3: 40-51
  31. Geli MI, Riezman H (1998) Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 111 ( Pt 8): 1031-1037
  32. Pruyne D, Bretscher A (2000) Polarization of cell growth in yeast. J Cell Sci 113 ( Pt 4): 571-585
  33. Nalavadi V, Nyitrai M, Bertolini C, Adamek N, Geeves MA, Bahler M (2005) Kinetic mechanism of myosin IXB and the contributions of two class IX-specific regions. J Biol Chem 280: 38957-38968
  34. Mulvihill DP, Edwards SR, Hyams JS (2006) A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe. Cell Motil Cytoskeleton 63: 149-161
  35. Grallert A, Martin-Garcia R, Bagley S, Mulvihill DP (2007) In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain. J Cell Sci 120: 4093-4098
  36. Mulvihill DP, Hyams JS (2003) Role of the two type II myosins, Myo2 and Myp2, in cytokinetic actomyosin ring formation and function in fission yeast. Cell Motil Cytoskeleton 54: 208-216
  37. Sambrook J, Frisch, E.F. and T. Maniatis (1989) Molecular Cloning: A laboratory manual., New York: Cold Spring Harbour.
  38. Diplom-Biologe, Diplomarbeit durchgeführt im Fachbereich Phytopathologie (AG Hahn): " 1. Etablierung des RNAi-vermittelten Gen-silencing im Grauschimmelerreger Botrytis cinerea und 2. Untersuchung von Genen mit starken Phänotyp mittels RNAi: BcCreA, ein putativer transkriptioneller Repressor der Katabolitrepression; BcPKC, eine zentrale Komponente der Zellwand-Integritäts MAP- Kinase Signalwegs. " PROMOTION 2006-April 2010
  39. Werner S, Sugui JA, Steinberg G, Deising HB (2007) A Chitin Synthase with a Myosin-Like Motor Domain Is Essential for Hyphal Growth, Appressorium Differentiation, and Pathogenicity of the Maize Anthracnose Fungus Colletotrichum graminicola. Mol Plant Microbe Interact 20: 1555-1567
  40. Langford GM (1995) Actin-and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7: 82-88
  41. Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR (2007) Activation of RalA is required for insulin- stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell 13: 391-404
  42. Shimada T, Sasaki N, Ohkura R, Sutoh K (1997) Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II. Biochemistry 36: 14037-14043
  43. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62: 999-1006
  44. Virag A, Griffiths AJ (2004) A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol 41: 213-225
  45. Hodge T, Cope MJ (2000) A myosin family tree. J Cell Sci 113 Pt 19: 3353-3354
  46. Murphy CT, Rock RS, Spudich JA (2001) A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nat Cell Biol 3: 311-315
  47. Govrin EM, Rachmilevitch S, Tiwari BS, Solomon M, Levine A (2006) An Elicitor from Botrytis cinerea Induces the Hypersensitive Response in Arabidopsis thaliana and Other Plants and Promotes the Gray Mold Disease. Phytopathology 96: 299-307
  48. Fujiwara M, Horiuchi H, Ohta A, Takagi M (1997) A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 236: 75-78
  49. Sietsma JHuW, J.H.G. (1994) Apical wall biogenesis. In The Mycota I, J.H.G. Wessel und F.
  50. Wedlich-Söldner R, Bölker M, Kahmann R, Steinberg G (2000) A putative endosomal t-SNARE links exo-and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J 19: 1974-1986 5. LITERATUR 119
  51. Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59: 1380-1394
  52. Mellado E, Dubreucq G, Mol P, Sarfati J, Paris S, Diaquin M, Holden DW, Rodriguez-Tudela JL, Latge JP (2003) Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet Biol 38: 98-109
  53. Umemoto S, Sellers JR (1990) Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins. J Biol Chem 265: 14864-14869
  54. Connell RJ RJ (1990) Chemical detection and ultrastructural localization of chitin in cell walls of Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology 39–53
  55. Siegrist J, Kauss H (1990) Chitin deacetylase in cucumber leaves infected by Colletotrichum lagenarium. Physiological and Molecular Plant Pathology: 267–275
  56. Chigira Y, Abe K, Gomi K, Nakajima T (2002) chsZ, a gene for a novel class of chitin synthase from Aspergillus oryzae. Curr Genet 41: 261-267
  57. Madrid MP, Di Pietro A, Roncero MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47: 257-266
  58. Yamashita RA, May GS (1998) Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J Biol Chem 273: 14644-14648
  59. Christensen JJ (1963) Corn smut induced by Ustilago maydis. Amer Phytopathol Soc Monogr 2
  60. Takeshita N, Ohta A, Horiuchi H (2002) csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 298: 103-109
  61. Sasaki N, Asukagawa H, Yasuda R, Hiratsuka T, Sutoh K (1999) Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J Biol Chem 274: 37840-37844
  62. Girbardt M (1955) Der Spitzenkörper von Polystictus versi color (L). Planta 50: 47-59
  63. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-517
  64. Nino-Vega GA, Munro CA, San-Blas G, Gooday GW, Gow NA (2000) Differential expression of chitin synthase genes during temperature-induced dimorphic transitions in Paracoccidioides brasiliensis. Med Mycol 38: 31-39
  65. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8: R196
  66. Doktorarbeit an der Philipps-Universität Marburg, durchgeführt am Max-Planck-Institut für terrestrische Mikrobiologie, Abt. Organismische Interaktionen (Marburg) und der " School of Biosciences " , Universität Exeter, unter der Betreuung von Prof. Dr. G. Steinberg Gefördert durch ein Stipendium der Deutschen Forschungsgemeinschaft im Rahmen des Graduiertenkollegs 1216
  67. Riquelme M, Gierz G, Bartnicki-Garcia S (2000) Dynein and dynactin deficiencies affect the formation and function of the Spitzenkorper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146 ( Pt 7): 1743-1752
  68. Torralba S, Raudaskoski M, Pedregosa AM, Laborda F (1998) Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144 (Pt 1): 45-53
  69. Lipschutz JH, Mostov KE (2002) Exocytosis: the many masters of the exocyst. Curr Biol 12: R212- 214
  70. Struchholz S, Elfrink K, Pieper U, Kalhammer G, Honnert U, Grutzner A, Linke WA, Liao W, Bahler M (2009) Functional role of the extended loop 2 in the myosin 9b head for binding F-actin. J Biol Chem 284: 3663-3671
  71. Nicholas KB, Nicholas H, B. Jr. (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments.
  72. Kim JE, Lee HJ, Lee J, Kim KW, Yun SH, Shim WB, Lee YW (2009) Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity. Curr Genet 55: 449-459
  73. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593
  74. Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7: 404-414
  75. Brachmann A, Weinzierl G, Kamper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42: 1047-1063
  76. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53: 1249-1254
  77. Ruiz-Herrera J, Xoconostle-Cazares B, Reynaga-Pena CG, Leon-Ramirez C, Carabez-Trejo A (2006b) Immunolocalization of chitin synthases in the phytopathogenic dimorphic fungus Ustilago maydis. FEMS Yeast Res 6: 999-1009
  78. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9: 339-355
  79. Yount RG, Lawson D, Rayment I (1995) Is myosin a "back door" enzyme? Biophys J 68: 44S-47S; discussion 47S-49S
  80. Park IC, Horiuchi H, Hwang CW, Yeh WH, Ohta A, Ryu JC, Takagi M (1999) Isolation of csm1 encoding a class V chitin synthase with a myosin motor-like domain from the rice blast fungus, Pyricularia oryzae. FEMS Microbiol Lett 170: 131-139
  81. Nino-Vega GA, Carrero L, San-Blas G (2004) Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 42: 51-57
  82. Bohlmann R. (1996) Isolierung und Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. Ludwig-Maximilians-Universität München.
  83. Steinberg G, Schliwa M, Lehmler C, Bolker M, Kahmann R, McIntosh JR (1998) Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J Cell Sci 111 ( Pt 15): 2235-2246
  84. Garcera-Teruel A, Xoconostle-Cazares B, Rosas-Quijano R, Ortiz L, Leon-Ramirez C, Specht CA, Sentandreu R, Ruiz-Herrera J (2004) Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res Microbiol 155: 87-97
  85. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R (2006a) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6: 14-29
  86. Sasaki N, Shimada T, Sutoh K (1998) Mutational analysis of the switch II loop of Dictyostelium myosin II. J Biol Chem 273: 20334-20340
  87. Woo M, Lee K, Song K (2003) MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. FEMS Microbiol Lett 218: 195-202
  88. O'Connell CB, Tyska MJ, Mooseker MS (2007) Myosin at work: motor adaptations for a variety of cellular functions. Biochim Biophys Acta 1773: 615-630
  89. Rogers SL, Gelfand VI (1998) Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr Biol 8: 161-164
  90. Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436: 1113-1118
  91. Coluccio LM (1997) Myosin I. Am J Physiol 273: C347-359
  92. Ikonen E, de Almeid JB, Fath KR, Burgess DR, Ashman K, Simons K, Stow JL (1997) Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J Cell Sci 110 ( Pt 18): 2155-2164
  93. Post PL, Tyska MJ, O'Connell CB, Johung K, Hayward A, Mooseker MS (2002) Myosin-IXb is a single-headed and processive motor. J Biol Chem 277: 11679-11683
  94. Inoue A, Saito J, Ikebe R, Ikebe M (2002) Myosin IXb is a single-headed minus-end-directed processive motor. Nat Cell Biol 4: 302-306
  95. Loubery S, Coudrier E (2008) Myosins in the secretory pathway: tethers or transporters? Cell Mol Life Sci 65: 2790-2800
  96. Brown SS (1997) Myosins in yeast. Curr Opin Cell Biol 9: 44-48
  97. Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16: 2670-2680
  98. Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400: 590-593
  99. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand- over-hand: single fluorophore imaging with 1.5-nm localization. Science 300: 2061-2065
  100. Heath IB, Gupta G, Bai S (2000) Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol 30: 45-62
  101. Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets spitzenkorper: microscopy, genetics, and genomics converge. Eukaryot Cell 4: 225-229
  102. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162-1164.
  103. Taylor EPI, Cameron DS (1973) Preparation and Quantitative Analysis of Fungal Cell Walls: Strategies and Tactics. Annual Review of Microbiology 27: 243-259
  104. Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283: 489-506
  105. Ruiz-Herrera J, Lopez-Romero E, Bartnicki-Garcia S (1977) Properties of chitin synthetase in isolated chitosomes from yeast cells of Mucor rouxii. J Biol Chem 252: 3338-3343
  106. Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5: 393- 399
  107. Ito K, Kashiyama T, Shimada K, Yamaguchi A, Awata J, Hachikubo Y, Manstein DJ, Yamamoto K (2003) Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem Biophys Res Commun 312: 958-964
  108. Brzeska H, Korn ED (1996) Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 271: 16983-16986
  109. Stakman EC (1915) Relation between Puccinia graminis and plants highly resistant to its attack. J Agric Res 193-299
  110. Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15: 553-564
  111. Wessels JHG (1990) Role of cell wall architecture in fungal tip growth generation. In Tip growth in plant and fungal cells, I.B. Heath e (ed), pp 1-29. San Diego, CA, USA: Academic Press Win TZ, Gachet Y, Mulvihill DP, May KM, Hyams JS (2001) Two type V myosins with non- overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 114: 69-79
  112. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297: 612-615
  113. Mrsa V, Tanner W (1999) Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 13: 1145-1154
  114. Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272: 533-535
  115. Merrifield CJ (2004) Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol 14: 352-358
  116. Hodges AR, Krementsova EB, Trybus KM (2008) She3p binds to the rod of yeast myosin V and prevents it from dimerizing, forming a single-headed motor complex. J Biol Chem 283: 6906-6914
  117. Goodson HV, Warrick HM, Spudich JA (1999) Specialized conservation of surface loops of myosin: evidence that loops are involved in determining functional characteristics. J Mol Biol 287: 173-185
  118. Aguilar A, Freitag M (2007) Spitzenkorper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 6: 1853-1864
  119. von Ropenack E, Parr A, Schulze-Lefert P (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 273: 9013-9022
  120. Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68: 687-728
  121. Osherov N, Yamashita RA, Chung YS, May GS (1998) Structural requirements for in vivo myosin I function in Aspergillus nidulans. J Biol Chem 273: 27017-27025
  122. Sasaki N, Sutoh K (1998) Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II. Adv Biophys 35: 1-24
  123. Thordal-Christensen H, Zhang, Z., Wei, Y. und D.B. Collinge (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley- powdery mildew interaction. Plant J: 1187–1194
  124. Choquer M, Boccara M, Goncalves IR, Soulie MC, Vidal-Cros A (2004) Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271: 2153-2164
  125. Bement WM, Mooseker MS (1995) TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton 31: 87-92
  126. Machesky LM, Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11: 117-121
  127. Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66: 279-290
  128. Specht CA, Liu Y, Robbins PW, Bulawa CE, Iartchouk N, Winter KR, Riggle PJ, Rhodes JC, Dodge CL, Culp DW, Borgia PT (1996) The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20: 153-167
  129. Mckillop DFA, Fortune NS, Ranatunga KW, Geeves A (1994) The influence of 2,3-butanedione 2- monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibers. J Muscle Res Cell Motil 15: 309-318
  130. Sietsma JH, Beth Din A, Ziv V, Sjollema KA, Yarden O (1996) The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa. Microbiology 142 ( Pt 7): 1591-1596
  131. Odenbach D, Thines E, Anke H, Foster AJ (2009) The Magnaporthe grisea class VII chitin synthase is required for normal appressorial development and function. Mol Plant Pathol 10: 81-94
  132. Schwaiger I, Sattler C, Hostetter DR, Rief M (2002) The myosin coiled-coil is a truly elastic protein structure. Nat Mater 1: 232-235
  133. Lamb C, Dixon RA (1997) The Oxidative Burst in Plant Disease Resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275
  134. Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323-329
  135. Virag A, Harris SD (2006) The Spitzenkorper: a molecular perspective. Mycol Res 110: 4-13
  136. Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS (2001) The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol 153: 1121-1126
  137. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261: 50-58
  138. Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23: 4527-4537
  139. Tuxworth RI, Titus MA (2000) Unconventional myosins: anchors in the membrane traffic relay. Traffic 1: 11-18
  140. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a Pathogen. Annu Rev Phytopathol 47: 423-445
  141. Meinhardt e (ed), pp 126-141. Berlin Heidelberg: Springer-Verlag Snetselaar KM, Bolker M, Kahmann R (1996) Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources. Fungal Genet Biol 20: 299-312
  142. Kahmann R, Steinberg, G., Basse, C., Feldbrügge, M. und J. Kämper (2000) Ustilago maydis, the causative agent of corn smut disease. Fungal Pathology. Kronstad JWe (ed), pp 347-371. Dodrecht, The Netherlands: Kluwer academic publishers.
  143. Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34: 8960-8972
  144. Ford RA, Shaw JA, Cabib E (1996) Yeast chitin synthases 1 and 2 consist of a non-homologous and dispensable N-terminal region and of a homologous moiety essential for function. Mol Gen Genet 252: 420-428
  145. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28: 231-234.
  146. Hoffmann J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of uromyces fabae. Fungal Genet Biol 24: 77-85
  147. Muller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68: 1827-1836
  148. Snetselaar KMuCWM (1994) Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol Res 347-355
  149. Snetselaar KMaCWM (1993) Infection of maize by Ustilago maydis: light and electron microscopy. Phytopathology: 843-850
  150. Snetselaar KMaCWM (1992) Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologica: 193-203
  151. Holliday R (1974) Ustilago maydis. In Handbook of Genetics King RC (ed), Vol. 1, pp 575–595. New York: Plenum Press
  152. Woolner S, Bement WM (2009) Unconventional myosins acting unconventionally. Trends Cell Biol 19: 245-252
  153. Fuchs U, Manns I, Steinberg G (2005) Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 16: 2746-2758
  154. Seiler S, Nargang FE, Steinberg G, Schliwa M (1997) Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J 16: 3025-3034
  155. Lehmler C, Steinberg G, Snetselaar KM, Schliwa M, Kahmann R, Bolker M (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16: 3464-3473
  156. Oberholzer U, Marcil A, Leberer E, Thomas DY, Whiteway M (2002) Myosin I is required for hypha formation in Candida albicans. Eukaryot Cell 1: 213-228
  157. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322 ( Pt 3): 681-692
  158. Kollmar M, Durrwang U, Kliche W, Manstein DJ, Kull FJ (2002) Crystal structure of the motor domain of a class-I myosin. Embo J 21: 2517-2525
  159. Weber I, Assmann D, Thines E, Steinberg G (2006) Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18: 225-242
  160. Purcell TJ, Morris C, Spudich JA, Sweeney HL (2002) Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99: 14159-14164
  161. Fuchs U, Hause G, Schuchardt I, Steinberg G (2006) Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18: 2066-2081
  162. Steinberg G (2007a) Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eukaryot Cell 6: 351-360
  163. Govindan B, Bowser R, Novick P (1995) The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128: 1055-1068
  164. Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA (1996) Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133: 1277-1291
  165. Vale RD (1996) Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol 135: 291-302
  166. Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135: 597-610
  167. Santos B, Snyder M (1997) Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 136: 95-110
  168. Kohler D, Ruff C, Meyhofer E, Bahler M (2003) Different degrees of lever arm rotation control myosin step size. J Cell Biol 161: 237-241
  169. Schott DH, Collins RN, Bretscher A (2002) Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 156: 35-39
  170. Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19: 339-351
  171. Wu X, Bowers B, Rao K, Wei Q, Hammer JA, 3rd (1998b) Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol 143: 1899-1918
  172. McGoldrick CA, Gruver C, May GS (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128: 577-587
  173. Martin-Urdiroz M, Roncero MI, Gonzalez-Reyes JA, Ruiz-Roldan C (2008) ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7: 112-121
  174. Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc Natl Acad Sci U S A 101: 10488-10493
  175. Wu Q, Sandrock TM, Turgeon BG, Yoder OC, Wirsel SG, Aist JR (1998a) A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol Biol Cell 9: 89-101
  176. Fukuda K, Yamada K, Deoka K, Yamashita S, Ohta A, Horiuchi H (2009) Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot Cell 8: 945-956
  177. Brand A, Gow NA (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12: 350- 357
  178. Ruppel KM, Spudich JA (1996) Structure-function studies of the myosin motor domain: importance of the 50-kDa cleft. Mol Biol Cell 7: 1123-1136
  179. Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7: 1909-1919 LEBENSLAUF Steffi Treitschke Geboren am 06. Juni 1980 in Lauchhammer SCHULAUSBILDUNG 1987-1993
  180. Wang ZY, Wang F, Sellers JR, Korn ED, Hammer JA, 3rd (1998) Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis. Proc Natl Acad Sci U S A 95: 15200-15205
  181. Spudich JA, Sivaramakrishnan S (2010) Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol 11: 128-137
  182. Geli MI, Lombardi R, Schmelzl B, Riezman H (2000) An intact SH3 domain is required for myosin I- induced actin polymerization. EMBO J 19: 4281-4291
  183. Hückelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119: 1251-1260
  184. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857-5864.
  185. Motegi F, Arai R, Mabuchi I (2001) Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell. Mol Biol Cell 12: 1367-1380
  186. Uyeda TQ, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93: 4459-4464
  187. Milligan RA (1996) Protein-protein interactions in the rigor actomyosin complex. Proc Natl Acad Sci U S A 93: 21-26
  188. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69: 2110-2114.
  189. Bracker CE, Ruiz-Herrera J, Bartnicki-Garcia S (1976) Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci U S A 73: 4570-4574
  190. Oberholzer U, Iouk TL, Thomas DY, Whiteway M (2004) Functional characterization of myosin I tail regions in Candida albicans. Eukaryot Cell 3: 1272-1286
  191. Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87: 4645-4649
  192. Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16: 497-506
  193. Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16: 918-926
  194. Liu X, Osherov N, Yamashita R, Brzeska H, Korn ED, May GS (2001) Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc Natl Acad Sci U S A 98: 9122-9127
  195. Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13: 469-479
  196. Horiuchi H, Fujiwara M, Yamashita S, Ohta A, Takagi M (1999) Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181: 3721-3729
  197. van der Vaart JM, Caro LM, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177: 3104-3110
  198. Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19: 706-724
  199. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467
  200. Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W, Martin T, Herskowitz I, Kahmann R (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60: 295-306
  201. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272
  202. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815
  203. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557- 580
  204. Rodriguez-Quinones JF, Irizarry RA, Diaz-Blanco NL, Rivera-Molina FE, Gomez-Garzon D, Rodriguez-Medina JR (2008) Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions. BMC Genomics 9: 34
  205. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198: 246-259


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten