Publikationsserver der Universitätsbibliothek Marburg

Titel:Molecular characterization of TGF-β mediated cancer cell proliferation
Autor:Singh, Garima
Weitere Beteiligte: Ellenrieder, Volker (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0267
DOI: https://doi.org/10.17192/z2010.0267
URN: urn:nbn:de:hebis:04-z2010-02671
DDC:610 Medizin, Gesundheit
Titel(trans.):Molekulare Charakterisierung von TGF-β vermitteltem Tumorzellenwachstum
Publikationsdatum:2010-05-27
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Transforming Growth Factor beta, Transforming Growth Factor beta

Summary:
TGF-β inhibits epithelial cell growth through Smad-dependent induction of a cell cycle arrest at G1. During tumor progression, however, many tumor cells escape from TGF-β growth suppression due to either functional or genetic disruption of the Smad signaling pathway. In late tumor stages, TGF-β stimulates tumor cell proliferation through increased cell cycle transition. Although this cellular event is clearly established, the molecular mechanisms underlying this phenomenon remain unknown. Here, we show that TGF-β stimulation induces cancer cell proliferation via accelerated G1/S phase transition. We show that cell proliferation requires induction of the c-Myc oncogene, and this is paralleled by upregulation of D-type cyclins and their corresponding CdKs. TGF-β induces c-Myc expression on the level of promoter regulation through induction of the c-Myc/TIE element, which has previously been reported as the core element for repression of c-Myc in growth inhibited cells. Mechanistically, TGF-β induces c-Myc promoter activation through the calcium responsive NFAT transcription factor family. We show that TGF-β induces expression and subsequent nuclear accumulation of NFATc1 and NFATc2 in cancer cells. NFAT proteins then bind to and displace Smad repressor complexes from the c-Myc/TIE to induce the c-Myc promoter transactivation and expression. c-Myc induction, on the other hand, is essential for subsequent cyclin upregulation and stimulation of G1/S phase transition in cancer. Thus, this study uncovers a key signaling and transcription pathway in TGF-β growth stimulation and identifies the NFAT transcription factor family as essential mediators of this function. From the medical point of view this study not only help to better understand the mechanisms underlying TGF-β growth promotion in cancer, but also provide a platform for novel options in the treatment of pancreatic cancer. In fact, recent approaches led to the identification of novel and interesting molecules that target the NFAT pathway more specifically in tumor cells. Future studies will show whether specific targeting of the NFAT system in tumor cells is a promising new strategy in the treatment of pancreatic cancer and in particular in those with high levels of TGF-β.

Zusammenfassung:
In normalen epithelialen Zellen und in frühen Tumorstadien bewirkt TGF-β eine starke Tumorsuppression, die v.a. auf der Smad vermittelten Induktion eines Zellzyklus-Arrests beruht. Während der Tumorprogression verlieren jedoch sehr viele Tumorzellen ihre Fähigkeit auf einen TGF-β Stimulus mit einer Wachstumshemmung zu antworten. Dies kann sowohl in genetischen Alterationen der TGF-β/Smad Signalkaskade, als auch in funktionellen oder epigenetischen Veränderungen dieses Signalweges oder wichtiger Interaktionspartner begründet sein. In späten Tumorstadien stimuliert TGF-β dann sogar das Wachstum epithelialer Zellen, obgleich die zugrundeliegenden molekularen Mechanismen nur unzureichend verstanden sind. Im Rahmen der vorliegenden Untersuchung konnten wir zeigen, dass TGF-β das Wachstum von Pankreaskarzinomzellen durch Induktion einer gesteigerten Zellzyklus-Progression stimuliert, was mit einer Zunahme der Expression von D-Typ Zyklinen und ihrer Aktivatoren einhergeht. Von zentraler Bedeutung ist hierbei die Promotoraktivierung und Induktion des mitogenen Transkriptionsfaktors c-Myc. Wir konnten zeigen, dass die Induktion von c-Myc nicht nur essentiell für die konsekutive Zellzyklus-Progression ist, sondern auch von einer vorangehenden Induktion der NFAT Transkriptionsfaktoren abhängt. TGF-β induziert Smadunabhängig die Expression und nukleäre Akkumulation von NFATc1 und NFATc2, welche anschlieβend am TIE-Element des proximalen c-Myc Promotors binden. Das TIE Element wurde in früheren Studien als „TGF-β-inhibitory element“ beschrieben und ist für die TGF-β vermittelte Repression des c-Myc Promotors und der Vermittlung einer Wachstumshemmung in epithelialen Zellen wichtig. In Pankreaskarzinomzellen führt die Bindung von NFAT am TIE Element des c-Myc Promotors zur Verdrängung DNA-bindender Smad3-Repressorkomplexe und anschlieβenden Induktion der c-Myc Transkription, G1-Progression und Proliferation. Dieser neue Mechanismus der TGF-β-Wachstumsregulation ist von zentraler Bedeutung für das phänotypische Verhalten von Pankreaskarzinomzellen und streng abhängig von der sequentiellen Induktion der pro-proliferativen Transkriptionsfaktoren NFAT und c-Myc. Diese Arbeit verdeutlicht auch die Rolle Smad-unabhängiger transkriptionell regulatierter Mechanismen im Pankreaskarzinom und untermauert eine wichtige Funktion der NFAT Transkriptionsfaktoren in der Karzinogenese epithelialer Tumoren. Letztlich liefert unsere Untersuchung erste Hinweise auf ein therapeutisches Potenzial der gezielten NFAT Hemmung in der Behandlung des Pankreaskarzinoms.

Bibliographie / References

  1. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. 2001. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol. 3 (4): 400-8.
  2. Lehmann K, Janda E, Pierreux CE, Rytömaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J. 2000. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14 (20): 2610-22.
  3. NFAT-ELK-1 transcription complex confers induction of the c-Myc promoter and stimulates proliferation in pancreatic cancer. Gastroenterology 2009. In press Kretzschmar M, Doody J, Timokhina I, Massagué J. 1999. A mechanism of repression of TGFb/Smad signaling by oncogenic Ras. Genes Dev. 13 (7): 804-816.
  4. Neal JW, Clipstone NA. 2003. A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem. 278 (19): 17246-54.
  5. Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ. 2004 Activation of the pro-survival phosphatidylinositol 3- kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem. 279 (2): 1359-67.
  6. Lipskaia L, Lompre AM. 2004. Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell. 96: 55-68.
  7. Levy L, Hill CS. 2006. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17(1-2): 41–58.
  8. Wotton D, Lo RS, Lee S, Massagué J. 1999. A SMAD transcriptional corepressor. Cell. 97 (1): 29–39.
  9. Truty MJ, Urrutia R. 2007. Basics of TGF-beta and Pancreatic Cancer. Pancreatology. 7 (5-6): 423–435. References 90
  10. Pavlath GK, Horsley V. 2003. Cell fusion in skeletal muscle—central role of NFATC2 in regulating muscle cell size. Cell Cycle. 2(5): 420-23.
  11. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. 2001. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol. Cell. 8 (6) 1277–1289.
  12. Li AG, Lu SL, Han G, Kulesz-Martin M, Wang XJ. 2005 Current view of the role of transforming growth factor beta 1 in skin carcinogenesis. J Investig Dermatol Symp Proc. 10 (2): 110-7.
  13. Siegel PM, Massague J. 2003. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3 (11): 807–821.
  14. Nakayama T, Berg LK, Christian JL. 2001. Dissection of inhibitory Smad proteins: both N-and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. Mech. Dev. 100 (2) : 251–262. References 88
  15. Muraoka-Cook RS, Dumont N, Arteaga CL. 2005. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression.Clin Cancer Res. 11 (2 Pt 2): 937s-43s.
  16. Seoane J. 2006. Escaping from the TGF-beta anti-proliferative control. Carcinogenesis. 27 (11): 2148–2156.
  17. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, KlöppelG, Kalthoff H, Ungefroren H, Löhr M, Scarpa A. 2001. Genetic profile of 22 pancreaticcarcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 439 (6): 798-802.
  18. Massague J. 2003. How cells read TGF-beta signals. Nature. 1 (3): 169–178.
  19. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389 (6651): 631-635.
  20. Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A. 2000. Inactivation of smad- transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol. 20 (21): 8103-11.
  21. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al. 1995. Inactivation of the type II TGF- beta receptor in colon cancer cells with microsatellite instability. Science. 268 (5215): 1336–38.
  22. Reguly T, Wrana JL. 2003. In or out? The dynamics of Smad nucleocytoplasmic shuttling. Trends Cell Biol. 13 (5): 216-20.
  23. Seoane J, Le HV, Shen L, Anderson SA, Massague J. 2004. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 117 (2): 211–223.
  24. Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004 Mar 10;23(5):1155-65. Epub 2004 Feb 19. Cited in Pubmed; PMID 14976548.
  25. Miyazaki M, Sakaguchi M, Akiyama I, Sakaguchi Y, Nagamori S, Huh NH. 2004. Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor beta 1 in human hepatocellular carcinoma cells. Cancer Res. 64 (12): 4155-61.
  26. Teicher BA. 2001. Malignant cells, disorders of the the malignant process: role of transforming growth factor–beta. Cancer metastasis Rev. 20 (1-2): 133-43.
  27. Shi Y, Massague J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113 (6): 685–700.
  28. Warner BJ, Blain SW, Seoane J, Massagué J. 1999. Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol. 19 (9): 5913-22.
  29. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005.5 (6): 472-84.
  30. Hannon GJ, Beach D. 1994. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 371(6494): 257–261.
  31. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. 1994. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8 (1): 9-22.
  32. Huang SC, Erdman SH. 2009. Pediatric juvenile polyposis syndromes: an update. Curr Gastroenterol Rep. 11 (3): 211-9.
  33. Sakaguchi M, Miyazaki M, Sonegawa H, Kashiwagi M, Ohba M, Kuroki T, Namba M, Huh NH. 2004. PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. J Cell Biol. 164 (7): 979-84.
  34. Horsley V, Pavlath GK. 2003. Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol. 161 (1): 111–118.
  35. Wrana JL 2000. Regulation of Smad activity. Cell. 100 (2): 189-92.
  36. Miyaki M, Kuroki T. 2003. Role of Smad4 (DPC4) inactivation in human cancer.
  37. Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D, Moustakas A.2000. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem. 275 (38): 29244-56.
  38. Li AG, Lu SL, Han G, Hoot KE, Wang XJ. 2006. Role of TGF-beta in skin inflammation and carcinogenesis. Mol Carcinog. 45 (6):389-96.
  39. Wang XJ. 2001. Role of TGFbeta signaling in skin carcinogenesis. Microsc Res Tech. 52 (4): 420-9.
  40. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell.95 (6): 779-91.
  41. Itoh S, Itoh F, Goumans MJ, Ten Dijke P. 2000. Signaling of transforming growth factor-b family members through Smad proteins. Eur J Biochem. 267 (24): 6954- 6967.
  42. Moustakas A, Souchelnytskyi S, Heldin CH. 2001. Smad regulation in TGF-beta signal transduction. J Cell Sci. 114 (Pt24): 4359–4369.
  43. Massague J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes & Dev. 19 (23), 2783–2810.
  44. Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S.1996. Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterolog. 111 (5):1369–72.
  45. Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL, Massagué J, Shi Y. 2000. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 287 (5450): 92-7.
  46. Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M. 2004. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res. 64 (15): 5200–5211.
  47. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. 1996. TGF-beta1 and Ha- Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10 (19): 2462-77.
  48. Massagué J. 2008. TGF-beta in Cancer. Cell. 134 (2): 215-30.
  49. Petritsch C, Beug H, Balmain A, Oft M.2000. TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev. 14 (24): 3093-101.
  50. Yu L, Hebert MC, Zhang YE. 2002. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. Embo J. 21 (14): 3749-3759. References 91
  51. Massague J, Blain SW, Lo RS. 2000. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103(2) :295-309. References 87
  52. Massague J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67: 753– 791.
  53. Janknecht R, Wells NJ, Hunter T. 1998. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12 (14): 2114-9.
  54. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 112 (7):1116-24.
  55. Medyouf H, Ghysdael J. 2008. The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle. 7 (3): 297-303.
  56. Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK. 1996. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell. 86 (3): 435-44.
  57. Wrana JL, Attisano L 2000. The Smad pathway. Cytokine Growth Factor Rev.11 (1- 2): 5-13.
  58. Seoane J. 2008. The TGFBeta pathway as a therapeutic target in cancer. Clin Transl oncol. 10 (1): 14-9.
  59. Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P. 2000. The transcriptional co- activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res. 28 (21): 4291-4298.
  60. Hogan PG, Chen L, Nardone J, Rao A. 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17 (18):2205-32.
  61. Rao A, Luo C, Hogan PG. 1997. Transcription factors of the NFAT family: regulation and function. Annual Review of immunology. 15: 707-747.
  62. Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF. 1995 Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270 (45): 26750–26753.
  63. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Münger K, Howley PM, Moses HL. 1990b. TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 61 (5): 777-85.
  64. Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH. 1998. The transcription factor NF-ATc is essential for cardiac valve formation. Nature. 392: 186-90.
  65. Hocevar BA, Brown TL, Howe PH. 1999. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway.
  66. Horsley V, Pavlath GK. 2002. NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol. 156 (5): 771–774.
  67. Zaichuk TA, Shroff EH, Emmanuel R, Filleur S, Nelius T, Volpert OV. 2004. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med. 199: 1513-22.
  68. Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP. 2008. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol. 28 (23): 7168-81
  69. Mancini M, Toker A. 2009. NFAT proteins: emerging roles in cancer progression.Nat Rev Cancer. 9 (11): 810-20.
  70. Viola JP, Carvalho LD, Fonseca BP, Teixeira LK. 2005. NFAT transcription factors: From cell cycle to tumor development. Braz J Med Biol Res. 38 (3): 335-44.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten