Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Analyse einer Ribokinase als neue myogenese-relevante Komponente und erste Hinweise auf eine Beteiligung von Ca2+-abhängigen Faktoren in der Myogenese von Drosophila melanogaster
Autor:Griemert, Barbara
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0146
URN: urn:nbn:de:hebis:04-z2010-01467
DOI: https://doi.org/10.17192/z2010.0146
DDC: Biowissenschaften, Biologie
Titel (trans.):Analysis of a ribokinase as a new myogenesis-relevant component and first indications for participation of Ca2+-dependent factors in myogenesis in Drosophila melanogaster
Publikationsdatum:2010-06-22
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Muskelentwicklung, Myogenesis, Developmental Biology, Entwicklungsbiologie

Zusammenfassung:
Die EMS-induzierte Mutante E832 (P3-106/2) zeigt Störungen in der Entwicklung der somatischen und viszeralen larvalen Muskulatur in der Embryonalentwicklung von Drosophila melanogaster (Reichert 2004; Wierach 2005). Ziel der vorliegenden Arbeit war die weiterführende Analyse dieser Mutante, die Charakterisierung und Identifizierung des für den mutanten Phänotyp verantwortlichen Gens. Bei Komplementationsanalysen unter Zuhilfenahme von charakterisierten Deletionen zur Eingrenzung des Genortes zeigte sich, dass womöglich drei Letalmutationen in myogenese-relevanten Genen auf dem E832 -Chromosom vorliegen. Aufgrund dieser Annahme wurde eine Entkopplung durchgeführt, um die Mutationen mit Hilfe von Rekombinations-Ereignissen zu trennen. Die resultierenden Fliegenstämme wurden mit Immunhistologie- und Komplementationstests analysiert. Zwei Regionen (32F1-33A2 und 33E1-33E3) konnten für einen somatischen Muskelphänotyp verantwortlich gemacht werden. Die Manifestierung des viszeralen Phänotyps erwies sich nach der Entkopplung als schwierig und somit lag der Schwerpunkt auf der Untersuchung der somatisch-relevanten Mutationen in der Region 33E1-33E3. Ein Großteil der in dieser Region liegenden Gene wurde anschließend kloniert, um mit Hilfe des UAS-Gal4-Systems Rettungs-Experimente durchzuführen. Ebenfalls konnte die mRNA-Expression mittels in situ-Hybridisierungen analysiert und zusammen mit den Rettungs-Experimenten einige Gene als Kandidaten für eine Relevanz in der Muskelentwicklung ausgeschlossen werden, weil Expressionsmuster in anderen Geweben wie Tracheen (CG31862) und Garlandzellen (CG31763 und Pkd2) erhalten wurden. Nur eines der Kandidatengene (CG17010) ist während der Mesoderm-Entwicklung exprimiert. Für CG17010 ist die Kodierungskapazität für eine Ribokinase annotiert und erhielt daher die Bezeichnung D-Rbks33E. D-Rbks33E (CG17010) zeigte eine Rettung des mutanten, somatischen Phänotyps in 33E1-33E3. Die mRNA dieses Gens ist in der Embryogenese weitestgehend ubiquitär exprimiert, wobei eine erhöhte Transkriptmenge im somatischen Mesoderm zu beobachten ist. Die Sequenzierung des mutierten Allels von D-Rbks33E ergab die Deletion einer Base. Auf Proteinebene führt dies zum Verlust der ATP-Binderstelle der D-Rbks33E. Erste immunhistologische Analysen zeigen, dass die Zelladhäsion in der Mutante korrekt verläuft und deshalb ein Defekt im nachfolgenden Prozess während der Myoblastenfusion vorliegen muss. Auf der Suche nach weiteren möglichen fusionsrelevanten Proteinen wurde nach Ca2+-abhängigen Faktoren und hier speziell nach Ca2+-Bindeproteinen gesucht. Es konnte ein Kandidat, Kosh, identifiziert werden. In situ-Hybridisierungen mit kosh ergaben durch die spezifische Expression erste Anhaltspunkte auf eine Funktion in den fusionskompetenten Myoblasten während der Fusion mit den Founderzellen. Somit ist Kosh eines der ersten Proteine, welches anzeigt, dass Kalzium neben einer physiologischen auch eine entwicklungsbiologische Rolle für die Muskulatur in Drosophila spielen könnte. Folglich wurden mit Hilfe vorliegender Untersuchungen zwei neue Komponenten aufgedeckt, welche in die Signalkaskaden der Myogenese einzugliedern sind.

Bibliographie / References

  1. Dyer, N., Rebollo, E., Dominguez, P., Elkhatib, N., Chavrier, P., Daviet, L., Gonzalez, C., & Gonzalez-Gaitan, M. 2007. Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development, 134, 4437–4447.
  2. Ruiz-Gomez, M., & Bate, M. 1997. Segregation of myogenic lineages in Drosophila required Numb. Deve- lopment, 124, 4857–4866.
  3. Quintyne, N., Gill, S., Eckley, D., Credo, C., Compton, D., & Schroer, T. 1999. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol., 147, 321–334.
  4. Mathews, I., Erion, M., & Ealick, S. 1998. Structure of human adenosine kinase at 1.5 A resolution. Bioche- mistry, 37, 15607–15620.
  5. Michelson, A., Gisselbrecht, S., Zhou, Y., Baek, K., & Buff, E. 1998. Dual functions of the Heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev. Gen., 22, 212–229.
  6. Adams, M., Celniker, S., & et al. 2000. The Genome Sequence of Drosophila melanogaster. Science, 287, 2185–2195.
  7. Kinley, A., Weed, S., Weaver, A., Karginov, A., Bissonette, E., & Cooper, J. 2003. Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion. Curr. Biol., 13, 384–393.
  8. Bate, M. 1990. The embryonic development of larval muscles in Drosophila. Development, 110, 791–804.
  9. Volk, T. 1992. A new member of the spectrin superfamily may participate in the formation of embryonic muscle attachments in Drosophila. Development, 116, 721–730.
  10. Brand, A., & Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  11. Paululat, A., Burchard, S., & Renkawitz-Pohl, R. 1995. Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila. Development, 121, 2611–2620.
  12. Klapper, R., Heuser, S., Strasser, T., & Janning, W. 2001. A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster. Development, 128, 25172524.
  13. San-Martin, B., Ruiz-Gomez, M., Landgraf, M., & Bate, M. 2001. A distinct set of founders and fusion- competent myoblasts make visceral muscles in the Drosophila embryo. Development, 128, 3331–3338.
  14. Artero, R., Castanon, I., & Baylies, M. 2001. The immunoglobulin-like protein Hibris functions as a dose- dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Deve- lopment, 128, 4251–4264.
  15. Dworak, H., Charles, M., Pellerano, L., & Sink, H. 2001. Characterization of Drosophila hibris, a gene related to human nephrin. Development, 128, 4265–4276.
  16. Finan, P., Shimizu, Y., Gout, I., Hsuan, J., Truong, O., Butcher, C., Bennett, P., Waterfield, M., & Kellie, S. 1994. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J. Biol. Chem., 269, 13752–13755.
  17. Abbraccio, M., Boeynaems, J., Barnard, E., Boyer, J., & et al. 2003. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharm. Sci., 24, 52–55.
  18. Schwaller, B. 2009. The continuing disappearance of "pure"Ca2+ buffers. Cell. Mol. Life Sci., 66, 275–300.
  19. Oenel, S., & Renkawitz-Pohl, R. 2009. FuRMAS: Triggering myoblast fusion in Drosophila. Dev. Dyn., 238, 1513–1525.
  20. Banachewicz, W., Suplat, D., Krzeminski, P., Pomorski, P., & Baranska, J. 2005. P2 nucleotide receptors on C2C12 satellite cells. Purinergic signalling, 1, 249–257.
  21. Massarwa, R., Carmon, S., Shilo, B., & Schejter, E. 2007. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev. Cell, 12, 557–569.
  22. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev. Biol., 304, 664–674.
  23. Carmena, A., Gisselbrecht, S., Harrison, J., Jimenez, F., & Michelson, A. 1998a. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Gen. Dev., 12, 3910–3922.
  24. Michelson, A., Abmayr, S., Bate, M., Martinzez-Arias, A., & Maniatis, T. 1990. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Gen. Dev., 4, 2086–2097.
  25. Luo, L., Liao, J., Jan, L., & Jan, Y. 1994. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Gen. Dev., 8, 1787–1802.
  26. Carmena, A., Bate, M., & Jimenez, F. 1995. lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Gen. Dev., 9, 2373–2383.
  27. Giot, L., Bader, J., Brouwer, C., & et al. 2003. A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1737.
  28. Pollard, T. 2007. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct., 36, 451–477.
  29. Stute, C., Schimmelpfeng, K., Renkawitz-Pohl, R., Palmer, R., & Holz, A. 2004. Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling als well as on miliways (miliAlk ) as receptor for Jeb signalling. Development, 131, 743–754.
  30. Richardson, B., Beckett, K., Nowak, S., & Baylies, M. 2007. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development, 134, 4357–4367.
  31. Carrasco-Rando, M., & Ruiz-Gomez, M. 2008. Mind bomb 2, a founder myoblast-specific protein, regulates myoblast fusion and muscle stability. Development, 135, 849–857.
  32. Shelton, C., Kocherlakotka, K., Zhuang, S., & Abmayr, S. 2009. The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development, 136, 1159–1168.
  33. Rubin, G., & Spradling, A. 1982a. Genetic transformation of Drosophila with transposable element vectors. Science, 218, 348–353.
  34. Sandona, D., Danieli-Betto, D., Germinario, E., Biral, D., Martinello, T., Lioy, A., Tarricone, E., Gastaldello, S., & Betto, R. 2005. The T-tubule membrane ATP-operated P2X4 receptor influences contractility of skeletal muscle. FASEB J., 19, 1184–1186.
  35. Menon, S., Osman, Z., Chenchill, K., & Chia, W. 2005. A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J. Cell Biol., 169, 909–920.
  36. Georgias, C., Wasser, M., & Hinz, U. 1997. A basic-helix-loop-helix protein expressed in precursors of Drosophila longitudinal visceral muscles. Mech. Dev., 69, 115–124.
  37. Kim, S., Shilagardi, K., Zhang, S., Hong, S., Sens, K., Bo, J., Gonzalez, G., & Chen, E. 2007. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell, 12, 571–586.
  38. Andersson, E., & Mowbray, S. 2002. Activation of Ribokinase by monovalent cations. J. Mol. Biol., 315, 409–419.
  39. Park, J., & Gupta, R. 2008. Adenosine kinase and ribokinase -the RK family of proteins. Cell. Mol. Life Sci., 65, 2875–2896.
  40. Rosenberg-Hasson, Y., Renert-Pasca, M., & Volk, T. 1996. A Drosophila dystrophin-related protein, MSP- 300, is required for embryonic muscle morphogenesis. Mech. Dev., 60, 83–94.
  41. Bate, M., Rushton, E., & Frasch, M. 1993. A dual requirement for neurogenic genes in Drosophila myogenesis. Development, Suppl., 149–161.
  42. Watnick, T., Jin, Y., Matunis, E., Kernan, M., & Montell, C. 2003. A flagellar Polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol., 13, 2179–2184.
  43. Dietzl, G., Chen, D., Schnorrer, F., Su, K., Barinova, Y., Fellner, M., & et al. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151–157.
  44. Gaul, U., Seifert, E., Schuh, R., & Jäckle, H. 1987. Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation. Cell, 50, 639–647.
  45. Kocherlakotka, K., Wu, J., McDermott, J., & Abmayr, S. 2008. Analysis of the cell adhesion molecule sticks- and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics, 178, 1371–83.
  46. Dohrmann, C., Azpiazu, N., & Frasch, M. 1990. A new Drosophila homeobox gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Gen. Dev., 4, 2098–2111.
  47. Estrada, B., Choe, S., Gisselbrecht, S., Michaud, S., Raj, L., Busser, B., Halfon, M., Church, G., & Michelson, A. 2006. An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genetics, 2, 160–171.
  48. Chen, E., & Olson, E. 2001. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev. Cell, 1, 705–715.
  49. Ranganayakulu, G., Zhao, B., Dokidis, A., Molkentin, J., Olson, E., & Schulz, R. 1995. A series of mutations in the D-Mef2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev. Biol., 171, 169–181.
  50. DiCera, E. 2006. A structural perspective on enzymes activated by monovalent cations. J. Biol. Chem., 281, 1205–1308.
  51. Jan, Y., & Jan, L. 1998. Asymmetric cell division. Nature, 392, 775–778.
  52. Kim, M., Lee, J., Ha, J., Kim, S., Kong, Y., Cho, Y., Baik, H., & Kang, I. 2002. ATP stimulates glucose transport through activation of P2 purinergic receptors in C2C12 skeletal muscle cells. Arch. Biochem. Biophys., 401, 205–214.
  53. Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K., Antonio, M., Beisel, K., Steel, K., & Brown, S. 1995. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature, 347, 62–64.
  54. Schröter, R., Buttgereit, D., Beck, L., Holz, A., & Renkawitz-Pohl, R. 2006. Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila. Differentiation, 74, 608–621.
  55. Meyer, R., & Aebi, U. 1990. Bundling of actin filaments by alpha-actinin depends on its molecular weight. J. Cell Biol., 110, 2013–2024.
  56. Ikura, M. 1996. Calcium binding and conformational response in E-F hand proteins. Trends Biochem., 21, 14–17.
  57. Pores-Fernando, A., & Zweifach, A. 2009. Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Imm. Rev., 231, 160–173.
  58. Feske, S. 2007. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol., 7, 690–702.
  59. Putney, J. 1990. Capacitative calcium entry revisited. Cell Calcium, 11, 611–624.
  60. Patel, N., Snow, P., & Goodman, C. 1987. Characterization and cloning of FasciclinIII: A glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell, 48, 975–988.
  61. Aaron, B., Oikawa, K., Reithmeier, R., & Sykes, B. 1984. Characterization of skeletal muscle Calsequestrin by 1H NMR spectroscopy. J. Biol. Chem., 259, 11876–11881.
  62. Wierach, B. 2005. Charakterisierung von bubbles, einem Gen für Zelltypspezifizierung in der Myogenese von Drosophila melanogaster und die Analyse von Protein-Interaktionen von Rolling pebbles unter Anwendung des Cyto Trap®-Systems. Diplomarbeit Philipps-Universität Marburg.
  63. Hummel, T., Schimmelpfeng, K., & Klämbt, C. 1999a. Commissure formation in the embryonic CNS of Drosophila. Dev.Biol., 209, 381–398.
  64. Cope, J., Whisstock, J., Rayment, I., & Kendrick-Jones, J. 1996. Conservation within the myosin motor domain: implications for structure and function. Structure, 4, 969–987.
  65. Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R., & Leptin, M. 1997. Control of cell fates and segmentation in the Drosophila mesoderm. Development, 124, 2915–2922.
  66. Guo, M., Jan, L., & Jan, Y. 1996. Control of daughter cell fates during asymmetric cell division: Interaction of Numb and Notch. Neuron, 17, 27–41.
  67. Ebashi, S., Endo, M., & Otsuki, I. 1969. Control of muscle contraction. Q. Rev. Biophys., 2, 351–384.
  68. Chen, E., Pryce, B., Tzeng, J., Gonzalez, G., & Olson, E. 2003. Control of myoblast fusion by a Guanine nucleotide exchange factor, Loner, and its effector ARF6. Cell, 114, 751–762.
  69. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidmann, J., Smith, J., & Struhl, K. 1993. Current protocols in molecular biology. John Wiley and Sons, New York.
  70. Schimmel, S., Hoffee, P., & Horecker, B. 1974. Deoxyribokinase from Salmonella typhimurium. Purification and properties. Arch. Biochem. Biophys., 164, 560–570.
  71. Hoth, M., & Penner, R. 1992. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 355, 353–356.
  72. Paululat, A., Breuer, S., & Renkawitz-Pohl, R. 1999. Determination and development of the larval muscle pattern in Drosophila melanogaster. Cell Tiss. Res., 151–160.
  73. Die Phänotypen der homozygoten Mutanten ähneln in Stadium 15/16 denen der Transheterozygoten der Mutanten mit den jeweiligen Defizienzen bzw. mit E832 . . 56
  74. Die Sequenzierung von D-Rbks bubbles33E-m ergibt eine Basendeletion an Position 494 . 81
  75. Saitoh, O., Arai, T., & Obinata, T. 1988. Distribution of microtubules and other cytoskeletal filaments during myotube elongation as revealed by fluorescence microscopy. Cell Tissue Res., 252, 263–273.
  76. Bienz, M., & Tremml, G. 1988. Domain of Ultrabithorax expression in Drosophila visceral mesoderm from autoregulation and exclusion. Nature, 333, 576–578.
  77. van der Plas, M., Pilgram, G., Jong, A., Bansraj, M., Fradkin, L., & Noordermeer, J. 2007. Drosophila Dystrophin is required for integrity of the musculature. Mech. Dev., 124, 617–630.
  78. Kracklauer, M., Banks, S., Xie, X., Wu, Y., & Fischer, J. 2007. Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly, 1, 75–85.
  79. Duan, H., Skeath, J., & Nguyen, H. 2001. Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development, 128, 4489–4500.
  80. Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, Alpha-Actinin and Zormin in the terminal Z-discs. J. Muscle Res. Cell Motil., 27, 93–106.
  81. Bour, B., Chakravarti, M., West, J., & Abmayr, S. 2000. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Gen. Dev., 14, 1498–1511.
  82. Tam, P., Kanai-Azuma, M., & Kanai, Y. 2003. Early endoderm development in vertebrates: lineage differen- tiation and morphogenetic funciton. Curr. Opin Gen. Dev., 13, 393–400.
  83. Sarikas, S., & Chlapowski, F. 1986. Effect of ATP inhibitors on the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycle of the rat urinary bladder. Cell Tissue Res., 246, 109–117.
  84. Bienz, M. 1997. Endoderm induction in Drosophila the nuclear targets of the inducing signals. Curr. Opin. Gen. Dev., 7, 683–688.
  85. St.Cyr, J., Bianco, R., Schneider, J., Mahoney, J., Tveter, R., Einzig, S., & Foker, E. 1989. Enhanced high energy phosphate recovery with ribose infusion after global myocardial ischemia in a canine model. J. Surg. Res., 46, 157–162.
  86. Reichert, N. 2004. Entwicklung von Myotuben bei Drosophila melanogaster: Analyse zweier EMS induzierter Mutanten und Protein-Protein Wechselwirkungen zwischen Rolling pebbles und weiteren fusions-relevanten Proteinen. Diplomarbeit Philipps-Universität Marburg.
  87. Suelter, C. 1970. Enzymes activated by monovalent cations. Science, 168, 789–795.
  88. Crouse, J., & Amorese, D. 1987. Ethanol precipitation: ammonium acetate as an alternative to sodium acetate. Focus, 9, 3–5.
  89. Parducci, R., Cabrera, R., Baez, M., & Guixe, V. 2006. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a RK family member. Biochemistry, 45, 9291–9299.
  90. Harley, H., Brook, D., Rundle, S., Crow, S., Reardon, W., Buckler, A., Harper, P., Housman, D., & Shaw, D. 1992. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature, 355, 545–546.
  91. Snow, P., Bieber, A., & Goodman, C. 1989. Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell, 59, 313–323.
  92. Horsley, V., & Pavlath, G. 2004. Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tiss. Org., 176, 67–78.
  93. Casas-Tinto, S., Gomez-Velazquez, M., Granadino, B., & Fernandez-Funez, P. 2008. FoxK mediates TGF-beta signalling during midgut differentiation in flies. J. Cell Biol., 183, 1049–1060.
  94. Wu, X., Jung, G., & Hammer, J. 2000. Functions of unconventional myosins. Curr. Opin. Cell Biol., 12, 42–51.
  95. Gassen, H., & Schrimpf, G. 1999. Gentechnische Methoden. Spektrum Akademischer Verlag.
  96. Bienz, M. 1994. Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet., 10, 22–26.
  97. Matte, A., Tari, L., & Delbaere, L. 1998. How do kinases transfer phosphoryl groups. Structure, 6, 413–419.
  98. Park, J., van Koeverden, P, Sing, B., & Gupta, R. 2007. Identification and characterization of human ribokinase and comparison of its properties with E.coli ribokianse and human adenosine kinase. FEBS Lett., 581, 3211–3216.
  99. Ren, R., Mayer, B., Cicchetti, P., & Baltimore, D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science, 259, 1157–1161.
  100. Sigrell, J, Cameron, A., & Mowbray, S. 1999. Induced fit on sugar binding activates ribokinase. J. Mol. Biol., 290, 1009–1018.
  101. Frasch, M. 1995. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature, 374, 464–467.
  102. Park, J., Singh, B., & Gupta, R. 2006. Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives. Mol. Cell. Biochem., 283, 11–21.
  103. -Interferenz mit dem CG4983-Transkript zeigt in Stadium 16 Defekte im Mesoderm 68
  104. Heizmann, C., & Hunziger, W. 1991. Intracellular calcium-binding proteins: more sites than insights. Trends Biochem., 16, 98–103.
  105. Englund, C., Loren, C., Grabbe, C., Varshney, G., Deleuil, F., Hallberg, B., & Palmer, R. 2003. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature, 425, 512–516.
  106. Weiss, J., Suyama, K., Lee, H., & Scott, M. 2001. Jelly belly: A Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation. Cell, 107, 387–398.
  107. Schröter, R., Lier, S., Holz, A., Bogdan, S., Klämbt, C., Beck, L., & Renkawitz-Pohl, R. 2004. kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development, 131, 4501–4509.
  108. Jagla, T., Bellard, F., Lutz, Y., Dretzen, G., Bellard, B., & Jagla, K. 1998. ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development, 125, 3699–3708.
  109. Frasch, M., & Leptin, M. 2000. Merges and acquisitions: unequal partnerships in Drosophila myoblast fusion. Cell, 102, 127–129.
  110. Park, M., Yaich, L., & Bodmer, R. 1998. Mesodermal cell fate decisions in Drosophila are under the control of the lineages genes numb, Notch and Sanpodo. Mech. Dev., 75, 117–126.
  111. Sambrook, J., Fritsch, E., & Maniatis, T. 1989. Molecular cloning. Cold Spring Harbor Laboratory Press.
  112. Pollard, T., Blanchoin, L., & Mullins, D. 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct., 29, 545–576.
  113. Schliwa, M., & Woehlke, G. 2003. Molecular motors. Nature, 422, 459–465.
  114. Sink, H. 2006. Muscle development in Drosophila. Springer + Business Media.
  115. Juhnke, H., Krems, B., Kötter, P., & Entian, K. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet., 252, 456–464.
  116. Rushton, E., Drysdale, R., Abmayr, S., Michelson, A., & Bate, M. 1995. Mutation in a novel gene, myo- blast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development, 121, 1979–1988.
  117. Abmayr, S., Zhuang, S., & Geisbrecht, E. 2008. Myoblast fusion in Drosophila. Methods Mol. Biol., 475, 75–97.
  118. Kesper, D., Stute, C., Buttgereit, D., Kreisköther, N., Vishnu, S., Fischbach, K., & Renkawitz-Pohl, R. 2007. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev. Dyn., 236, 404–415.
  119. Ruiz-Gomez, M., Coutts, N., Suster, M., Landgraf, M., & Bate, M. 2002. myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-compentent myoblasts in Drosophila. Development, 129, 133–141.
  120. Abmayr, S., Balagopalan, L., Galetta, B., & Hong, S. 2005. Myogenesis and Muscle Development. In Com- prehensive Molecular Insect Science. Vol. 2.
  121. Baylies, M., Bate, M., & Ruiz-Gomez, M. 1998. Myogenesis: A view from Drosophila. Cell, 93, 921–927.
  122. Crossley, A. 1985. Nephrocytes and pericardial cells. In Comprehensive Insect Physiology, Biochemistry and Pharmacology.
  123. Neuhaus, H., & Emes, M. 2000. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 111–140.
  124. Uemura, Ta., Shepherd, S., Ackerman, L., Jan, L., & Jan, Y. 1989. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell, 58, 349–360.
  125. Stossel, T. 1993. On the crawling of animal cells. Science, 260, 1086–1094.
  126. Lawrence, P., & Johnston, P. 1989. Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development, 105, 761–767.
  127. Furlong, E., Andersen, E., Null, B., White, K., & Scott, M. 2001. Patterns of gene expression during Drosophila mesoderm development. Science, 293, 1629–1633.
  128. Maj, M., Singh, B, & Gupta, R. 2002. Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition. Biochemistry, 41, 4059–4069.
  129. Hao, W., & Gupta, R. 1996. Pentavalent ions dependency of mammalian adenosine kinase. Biochem. Mol. Biol. Int., 38, 889–899.
  130. Janmey, P. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol., 56, 169–191.
  131. Park, J., Singh, B., Maj, M., & Gupta, R. 2004. Phosphorylated derivatives that activate or inhibit mam- malian adenosine kinase provide insights into the role of pentavalent ions in AK catalysis. Protein J., 23, 167–177.
  132. Baba, Y., & Kurosaki, T. 2009. Physiological function and molecular basis of STIM1-mediated calcium entry in immune cells. Imm. Reviews, 231, 174–188.
  133. Gao, Z., Ruden, D., & Lu, X. 2003. PKD2 cation channel is required for directional sperm movement and male fertility. Curr. Biol., 13, 2175–2178.
  134. Sakashita, E., & Sakamoto, H. 1996. Protein-RNA and Protein-Protein interactions of the Drosophila sex- lethal mediated by its RNA-Binding Domains. J. Biochem., 120, 1028–1033.
  135. Agranoff, B., & Brady, R. 1956. Purification and properties of calf liver ribokinase. J. Biol. Chem., 219, 221–229.
  136. Sigrell, J., Cameron, A., Jones, T., & Mowbray, S. 1997. Purification, characterization, and crystallization of Escherichia coli ribokinase. Protein Sci., 6, 2474–2476.
  137. Hakeda-Suzuki, S., Ng, J., Tzu, J., Dietzl, G., Sun, Y., Harms, M., Nardine, T., Luo, L., & Dickson, B. 2002. Rac function and regulation during Drosophila development. Nature, 416, 438–442.
  138. Kosman, D., Small, S., & Reinitz, J. 1998. Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev. Genes Evol., 208, 290–294.
  139. Pollard, T. 1986. Rate constants for the reactions of ATP-and ADP-Actin with the ends of actin filaments. J. Cell Biol., 103, 2747–2754.
  140. Rbks 33E ist während der ganzen Embryonalentwicklung in Drosophila exprimiert . 78
  141. Moews, P., & Kretsinger, R. 1975. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J. Mol. Biol., 91, 201–228.
  142. Yin, Z., & Frasch, M. 1998. Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Gen. Dev, 22, 187–200.
  143. Rau, A., Buttgereit, D., Holz, A., Fetter, R., Doberstein, S., Paululat, A., Stadt, N., Skeath, J., Michelson, A., & Renkawitz-Pohl, R. 2001. rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development, 128, 5061–5073.
  144. Crozatier, M., & Vincent, A. 1999. Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signaling. Development, 126, 1495– 1504.
  145. Miyado, K. 2000. Requirement of CD9 on egg plasma membrane for fertilization. Science, 287, 321–324.
  146. Etienne-Manneville, S., & Hall, A. 2002. Rho GTPases in cell biology. Nature, 420, 629–635.
  147. Chuvikovsky, D., Esipov, R., Skoblow, Y., Chupova, L., Muravyova, T., Miroshnikov, A., Lapinjokli, S., & Mikhailopoulo, I. 2006. Ribokinase from E. coli : expression, purification, and substrate specificity. Bioorg. Med. Chem., 14, 6327–6332.
  148. Siomi, H., & Dreyfuss, G. 1997. RNA-binding proteins as regulators of gene expression. Curr. Opin. Gen. Dev., 7, 345–353.
  149. Oenel, S., Dottermusch, C., Sickmann, A., Buttgereit, D., & Renkawitz-Pohl, R. 2010. Role of the Actin Cy- toskeleton within the FuRMAS during Drosophila myoblast fusion and first common players in vertebrates in: Cell Fusions: Regulation and Control. Soringer Verlag 2010.
  150. Strünkelnberg, M., Bonengel, B., Moda, L., Hertenstein, A., Couet, G., Ramos, R., & Fischbach, K. 2001. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development, 128, 4229–4239.
  151. Franzini-Armstrong, C., & Protasi, F. 1997. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol. Rev., 77, 699–729.
  152. Wang, J., Dong, Z., & Bell, L. 1997. Sex-lethal interactions with protein and RNA. J. Biol. Chem., 272, 22227–22235.
  153. Izard, J., & Kendall, D. 1994. Signal peptides: exquisitely designed transport promotors. Mol. Microbiol., 13, 765–773.
  154. Galletta, B., Chakravarti, M., Banerjee, R., & Abmayr, S. 2004. SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech. Dev., 121, 1455– 1468.
  155. Huang, G., Zeng, W., Kim, J., Yuan, J., Han, L., Muallem, S., & Worley, P. 2006. STIM1 carboxyl-terminus activates native SOC, ICRAC and TRPC1 channels. Nat. Cell Biol., 8, 1003–1010.
  156. Calahan, M. 2009. STIMulating store-operated Ca2+ entry. Nat. Cell Biol., 11, 669–677.
  157. Stathopulos, P., Li, G., .Plevin, M, Ames, J., & Ikura, M. 2006. Stored Ca2+ depletion-induced oligome- rization of stromal interaction molecule 1 (STIM1) via EF-SAM region -an initiation mechanism for capacitative Ca2+ entry. J. Biol. Chem., 281, 35855–35862.
  158. Parekh, A., & Penner, R. 1997. Store depletion and calcium influx. Physiol. Rev., 77, 901–930.
  159. Parekh, A., & Putney, J. 2005. Store-operated calcium channels. Physiol. Rev., 85, 757–810.
  160. Sigrell, J., Cameron, A., Jones, R., & Mowbray, S. 1998. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: insights into a new family of kinase structures. Structure, 6, 183–193.
  161. Macias, M., Hyvönen, M., Baraldi, E., Schultz, J., Sudol, M., Saraste, M., & Oschkinat, H. 1996. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature, 382, 646–649.
  162. Kabsch, W., & Holmes, K. 1995. The actin fold. FASEB J., 9, 167–174.
  163. Frankel, S., & Mooseker, M. 1996. The actin-related proteins. Curr. Opin. Cell Biol., 8, 30–37.
  164. Tupling, R. 2009. The decay phase of Ca2+ transients in skeletal muscle: regulation and physiology. Appl. Physiol. Nutr. Metab., 34, 373–376.
  165. Tepass, U., & Hartenstein, V. 1994. The development of cellular junctions in the Drosophila embryo. Dev. Biol., 161, 563–596.
  166. Kania, M., Bonner, A., Duffy, J., & Gergen, P. 1990. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Gen. Dev., 4, 1701–1713.
  167. Maj, M., & Gupta, R. 2001. The effect of inorganic phosphate on the activity of bacterial ribokinase. J. Protein Chem., 20, 139–144.
  168. Araya, R., Riquelme, M., Brandan, E., & Saez, J. 2004. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Res. Rev., 47, 174–188.
  169. Klapper, R., Stute, C., Schomaker, O., Strasser, T., Janning, W., Renkawitz-Pohl, R., & Holz, A. 2002. The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech. Dev., 110, 85–96.
  170. Bodmer, R. 1993. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development, 118, 719–729.
  171. Maj, M., Singh, B., & Gupta, R. 2000. The influence of inorganic phosphate on the activity of adenosine kinase. Biochim. Biophys. Acta, 1476, 33–42.
  172. Estrada, B., Maeland, A., Gisselbrecht, S., Bloor, J., Brown, N., & Michelson, A. 2007. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Dev. Biol., 307, 328–339.
  173. Bate, Michael. 1993. The Mesoderm and Its Derivatives. In The Development of Drosophila melanogaster. Vol. 2.
  174. Wigglesworth, V. 1972. The Principles of Insect Physiology.
  175. White, J., & Munro, S. 2001. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell, 1, 527–537.
  176. Anderson, A., & Cooper, R. 1969. The significance of ribokinase for ribose utilization by Escherichia coli. Biochim. Biophys. Acta, 177, 163–165.
  177. Aggarwal, S., & King, R. 1967. The ultrastructure of the wreath cells of Drosophila melanogaster larvae. Protoplasma, 63, 343–352.
  178. Berridge, M., Lipp, P., & Bootman, M. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1, 11–21.
  179. Takenawa, T., & Suetsugu, S. 2007. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol., 8, 37–48.
  180. Azpiazu, N., & Frasch, M. 1993. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Gen. Dev., 7, 1325–1340.
  181. Rubin, G., & Spradling, A. 1982b. Transposition of cloned P elements into Drosophila germ line chromosomes. Science, 218, 341–347.
  182. Baylies, M., & Bate, M. 1996. twist: A myogenic switch in Drosophila. Science, 272, 1481–1483.
  183. Berger, S., Schäfer, G., Kesper, D., Holz, A., Eriksson, T., Palmer, R., Beck, L., Klämbt, C., Renkawitz- Pohl, R., & Önel, S. 2008. WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J. Cell Sci., 121, 1303–1313.
  184. Baylies, M., Martinez-Arias, A., & Bate, M. 1995. wingless is required for the formation of a subset of muscle founder cells during Drosophila embryogenesis. Development, 121, 3829–3837.
  185. Wolfstetter, G., Shirinian, M., Stute, C., Grabbe, C., Hummel, T., Baumgartner, S., Palmer, R., & Holz, A. 2009. Fusion of circular and longitudinal muscles in Drosophila is independent of the endoderm but further visceral muscle differentiation requires a close contact between mesoderm and endoderm. Mech. Dev., 126, 721–736.
  186. Birnboim, H., & Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res., 7, 1513–1523.
  187. Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M., & Bate, M. 2000. Drosophila Dumbfounded: A myoblast attractant essential for fusion. Cell, 102, 189–198.
  188. Gourine, A., Laudet, E., Dale, N., & Spyer, M. 2005. ATP is a mediator of chemosensory transduction in the central nervous system. Nature, 436, 108–111.
  189. Fedoroff, O., Townson, S., Golovanov, A., Baron, M., & Avis, J. 2004. The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, Suppressor of Deltex. J. Biol. Chem., 279, 34991–35000.
  190. Williamson, M. 1994. The structure and function of proline-rich regions in proteins. Biochem. J., 249–260.
  191. Periz, G., & Fortini, M. 1999. Ca2+-ATPase function is required for intracellular trafficking of the Notch receptor in Drosophila. EMBO J., 18, 5983–5993.
  192. MacLennan, D. 1990. Molecular tools to elucidate problems in excitation-contraction coupling. Biophys. J., 58, 1355–1365.
  193. Muller, J., Oma, Y., Vallar, L., Friederich, E., Poch, O., & Winsor, B. 2005. Sequence and comparative genomic analysis of actin-related proteins. Mol. Biol. Cell, 16, 5736–5748.
  194. Mogilner, A., & Edelstein-Keshet, L. 2002. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83, 1237–1258.
  195. Loren, C., Englund, C., Hallberg, B., Hunter, T., & Palmer, R. 2003. A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep., 4, 781–786.
  196. Campos-Ortega, J., & Hartenstein, V. 1997. The embryonic development of Drosophila melanogaster. Sprin- ger Verlag, Berlin.
  197. Koundakjian, E., Cowan, D., Hardy, R., & Becker, A. 2004. The Zuker collection: A resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics, 167, 203–206.
  198. Samuels, M., Deshpande, G., & Schedl, P. 1998. Activities of the sex-lethal protein in RNA binding and protein:protein interactions. Nucl. Acids Res., 26, 2625–2637.
  199. Baba, Y., Hayashi, K., Fujii, Y., Mizushima, A., Watarai, H., Wakamori, M., Numaga, T., Mori, Y., Iino, M., Hikida, M., & Kurosaki, T. 2006. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 103, 16704–16709.
  200. Haghnia, M., Cavalli, V., Shah, S., Schimmelpfeng, K., Brusch, R., Yang, G., Herrera, C.l, Pilling, A., & Goldstein, L. 2007. Dynactin is required for coordinated bidirectional motility, but not for Dynein membrane attachment. Mol. Biol. Cell, 18, 2081–2089.
  201. Marks, P., & Maxfield, F. 1990. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J. Cell Biol., 110, 43–52.
  202. Doberstein, S., Fetter, R., Mehta, A., & Goodman, C. 1997. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol., 136, 1249–1261.
  203. Erickson, M., Galletta, B., & Abmayr, S. 1997. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure and cytoskeletal organization. J. Cell Biol., 138, 589–603.
  204. Bork, P., Sander, C., & Valencia, A. 1993. Convergent evolution of similar enzymatic function of different protein folds: the hexokinase, ribokinase and galactokinase families of sugar kinases. Protein Sci., 2, 31–40.
  205. Putney, J. 2005. Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 169, 381–382.
  206. Schafer, D., Gill, S.n, Cooper, J., Heuser, J., & Schroer, T. 1994. Ultrastructural analysis of the Dynactin complex: An actin-related protein is a component of a filament that resembles F-actin. J. Cell Biol., 126, 403–412.
  207. Beckett, K., Rochlin, K., Duan, H., Nguyen, H., & Baylies, M. 2008. Expression and functional analysis of a novel fusion competent myoblast specific GAL4 driver. Gene Expr. Patt., 8, 87–91.
  208. Jani, K., & Schöck, F. 2007. Zasp is required for the assembly of functional integrin adhesion sites. J. Cell Biol., 179, 1583–1597.
  209. Choo, H., Kim, B., Kwon, O., Lee, C., Choi, J., & Ko, Y. 2008. Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes. Exp. Mod. Med., 40, 220–228.
  210. Geisbrecht, E., Haralalka, S., Swanson, S., Florens, L., Washburn, M., & Abmayr, S. 2008. Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev.
  211. Royer, L., & Rios, E. 2009. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J. Physiol., 587.13, 3101–3111.
  212. Zhuang, S., Shao, H., Guo, F., Trimble, R., Pearce, E., & Abmayr, S. 2009. Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development, 136, 2335–2344.
  213. Guerin, C., & Kramer, S. 2009. Cytoskeletal remodeling during myotube assembly and guidance. Comm. Integr. Biol., 2, 452–457.
  214. Boczkowska, M., Rebowski, G., Petoukhov, M., Hayes, D., Svergun, D., & Dominguez, R. 2008. X-Ray scattering study of activated Arp2/3 complex with bound Actin-WCA. Structure, 16, 695–704.
  215. Birney, E., Kumar, S., & Krainer, A. 1993. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucl. Acids Res., 5803–5816.
  216. Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F., & Cia, W. 1998b. inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Gen. Dev., 12, 304–315.
  217. Liou, J., Kim, M., Heo, W., Jones, J., Myers, J., Ferrell, J., & Meyer, T. 2005. STIM is a Ca2+ sensor essential for Ca2+-store-depletion triggered Ca2+ influx. Curr. Biol., 15, 1235–1241.
  218. Lewis, R., & Calahan, M. 1989. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul., 1, 99–112.
  219. Zweifach, A., & Lewis, R. 1993. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA, 90, 6295–6299.
  220. Menon, S., & Chia, W. 2001. Drosophila Rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev. Cell, 1, 691–703.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten