Publikationsserver der Universitätsbibliothek Marburg

Titel:Identifikation und Charakterisierung neuer Interaktionspartner und Zielgene der Proteinargininmethyltransferase 4
Autor:Streubel, Gundula
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0144
DOI: https://doi.org/10.17192/z2010.0144
URN: urn:nbn:de:hebis:04-z2010-01446
DDC: Biowissenschaften, Biologie
Titel(trans.):Identification and characterisation of novel interacting proteins and target genes of the Proteine Arginine Methyltransferase 4
Publikationsdatum:2010-06-24
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Histon-Methyltransferase, K562, Arginin, Transkription, Histone, Proteinargininmethyltransferase, arginine methylation, histones, transcriptional regulation, Methylierung, HD11, c-Myb, PRMT4, Chromatin, Transkription <Genetik>

Zusammenfassung:
Die Proteinargininmethyltransferase PRMT4 ist als transkriptioneller Coaktivator an der regulierten Expression von Genen während der Ontogenese wichtig. Dabei trägt PRMT4 durch die Methylierung von Argininen im Histon H3 zum Histoncode bei und assoziiert mit weiteren Coaktivatoren, um mit diesen kooperativ die Transkription zu verstärken. Eine Kooperativität zwischen PRMT4 und einer weiteren PRMT, PRMT1, wurde bisher für wenige Transkriptionsfaktoren beschrieben und untersucht. Dem ersten Teil dieser Arbeit lag der Befund einer Microarrayanalyse in HeLa-Zellen zu Grunde. Dieser zeigte, dass PRMT1 und PRMT4 nur dann eine Änderung des Genexpressionprofils hervorriefen, wenn sie zusammen wirkten. Die transkriptionelle Regulation der durch PRMT1 und PRMT4 kooperativ aktivierten Gene CITED2 und KRT8 wurde in der vorgelegten Arbeit genauer analysiert. Es konnte nachgewiesen werden, dass das Cytokin IL-4 in HeLa-Zellen die Phosphorylierung und damit Aktivierung des STAT5- und STAT6-Signalweges sowie eine transkriptionelle Induktion von CITED2 und KRT8 bewirkt. Die IL-4-induzierte Transkription des CITED2-Gens war vom Transkriptionsfaktor STAT5 und den Coaktivatoren PRMT1 und PRMT4 abhängig. Anhand von ChIP-Analysen wurde eine Bindung von PRMT1 und PRMT4 sowie STAT5 an den CITED2-Promotor nach IL-4-Stimulation festgestellt. Die IL-4-induzierte Transkription von CITED2 ging mit der für die Coaktivatorfunktion von PRMT1 und PRMT4 typischenen Argininmethylierungen von Histonen einher. Diese Befunde legten nahe, dass PRMT1 und PRMT4 die Transkription von CITED2 als direkte Coaktivatoren auf der Ebene des Promotors regulieren. Da PRMT1 und PRMT4 mit STAT5 in Abhängigkeit des IL-4-Stimulus interagierten, vermittelt STAT5 vermutlich die Zielgenspezifität der PRMTs für CITED2. In dieser Arbeit wurde damit erstmals eine direkte Coaktivatorfunktion von PRMTs in einem JAK-STAT-Signalweg belegt. PRMT4 übt seine Funktion als Coaktivator durch die Interaktion mit anderen Proteinen oder innerhalb von Komplexen aus. Die Gelfiltrationsanalysen in dieser Arbeit deuteten darauf hin, dass PRMT4 in einem höhermolekularen Komplex vorliegt. Ziel des zweiten Teils der vorgelegten Arbeit war es daher neue Interaktionspartner von PRMT4 zu identifizieren, um bisher unbekannte Funktionen und Signalwege von PRMT4 aufzuzeigen. Die Isolierung endogener PRMT4-Komplexe mittels Ionenaustauscher-Chromatographie und einer anschließenden Affinitätsaufreinigung ermöglichte die massenspektrometrische Identifikation der Proteine Mi-2 und ALIX als neue Interaktionspartner von PRMT4. Die Interaktionen wurden jeweils anhand von unabhängigen Interaktionsstudien verifiziert. Es stellte sich außerdem heraus, dass auch das mit Mi-2 verwandte Protein Mi-2 mit PRMT4 interagiert. Da Mi-2Mi-2 als Mitglieder der Familie der ATP-abhängigen Chromatin-remodeller an der Regulation der Transkription beteiligt sind, ergab sich die Frage nach einer gemeinsamen Funktion mit PRMT4. Eine Assoziation von PRMT4 mit dem Repressorkomplex NuRD, in dem Mi-2 und Mi-2 als integrale Bestandteile auftreten, konnte auf Grund von CoIPs ausgeschlossen werden. Cotransfektions-Assays in der Hühnchen-Makrophagenzelllinie HD11 deckten eine Synergie von PRMT4 und den beiden Mi-2-Proteinen in der Aktivierung der c-Myb-vermittelten Transkription der Gene mim-1 und Lysozym auf. Anhand RNAi-vermittelter Depletionen und ChIP-Analysen in der humanen erythroleukämischen Zelllinie K562 wurde nachgewiesen, dass die c-Myb-Zielgene c-MYC und CDC7 einer aktivierenden und direkten transkriptionellen Regulation durch PRMT4 und Mi-2 unterliegen. Untersuchungen zur biologischen Relevanz der Proteine PRMT4 und Mi-2 in hämatopoetischen Zellen zeigten eine Korrelation mit den c-Myb-vermittelten Effekten auf die Proliferation, den Zellzyklus und die erythroide Differenzierung. Diese Ergebnisse, zusammen mit dem in dieser Arbeit erbrachten Nachweis der Interaktion zwischen c-Myb und PRMT4 bzw. der Mi-2-Proteine, decken PRMT4 und Mi-2 als kooperierende transkriptionelle Coaktivatoren von c-Myb auf. Die Daten lassen den Schluss zu, dass PRMT4 und Mi-2 Regulatoren c-Myb-vermittelter Funktionen sind und somit in die Erythropoese eingreifen.

Summary:
As a transcriptional coactivator, proteine arginine methyltransferases 4 (PRMT4) is a crucial regulator of gene expression. At the one hand, the enzyme feeds the histone code by the methylation of arginines at Histone H3, and on the other hand, PRMT4 interacts with other coactivators to enhance transcription in a cooperative manner. So far, a synergy between PRMT4 and another PRMT, PRMT1, has been described only for a small number of transcription factors. In the first part of this work, it was shown that PRMT1 and PRMT4 cooperatively regulate the putative STAT5-target genes CITED2 and KRT8. It was demonstrated that treatment of HeLa cells with the cytokine IL-4 causes phosphorylation and therefore activation of STAT5- and STAT6-signalling as well as transcriptional activation of CITED2 and KRT8. The transcriptional induction of CITED2 was strongly dependent on the transcription factor STAT5 as well as the coactivators PRMT1 and PRMT4. Chromatin immunoprecipitation (ChIP) analysis unveiled direct recruitment of STAT5, PRMT1 and PRMT4 at the promoter of CITED2 following IL-4 stimulation. Moreover, the transcriptional induction of CITED2 coincides with the arginine methylation of histones typical for both PRMTs. These findings prove PRMT1 and PRMT4 as direct regulators of CITED2 on the level of the promoter. As PRMT1 and PRMT4 interact with STAT5 in an IL-4-dependent manner, STAT5 probably mediates the target gene specificity of the PRMTs for CITED2. These data reveal for the first time a direct cooperative coactivating function of PRMT1 and PRMT4 in JAK-STAT-signalling. PRMT4 exert its function as transcriptional coactivator by interacting with other proteins. Gelfiltration analysis carried out in this work implicated PRMT4 reside within higher molecular weight complexes. The aim of the second part of this work was to identify novel interaction partners of PRMT4 to uncover unknown functions and signalling pathways of the enzyme. Using ion-exchange chromatography and subsequent affinity purification enabled the separation of endogenous PRMT4-containing complexes and the identification of the proteins Mi-2 and ALIX as novel interaction partners of PRMT4 by mass spectrometry. These interactions have been verified by independent interaction assays. It turned out, that the Mi-2 related protein Mi-2 is also able to interact with PRMT4. As member of the protein family of the ATP-dependent chromatin remodelers, Mi-2 (Mi-2/) plays a key role in transcriptional regulation, implicating a common function with PRMT4 in gene expression. Association of PRMT4 with the NuRD repressor complex, containing the integral components Mi-2 or Mi-2, could be excluded by coimmunoprecipitations (CoIPs). Using the transformed chicken macrophage cell line HD11, a synergy between PRMT4 and both Mi-2 proteins in the activation of c-Myb dependent transcription of the mim-1 and Lysozyme gene has been observed by cotransfection assays. RNAi-mediated depletions as well as ChIP analysis in the human erythroleukemic cell line K562 demonstrate a positive and direct regulation of the c-Myb target genes c-MYC and CDC7 by PRMT4 and Mi-2. Studies carried out to investigate the biological relevance of PRMT4 and Mi-2 in hematopoietic cells showed a correlation with c-Myb mediated effects on cell proliferation, cell cycle and erythroid differentiation. The results described here, together with the finding that c-Myb interacts with PRMT4 and Mi-2, show PRMT4 and Mi-2 as cooperative coactivators of c-Myb. This data indicates that PRMT4 and Mi-2 are regulators of c-Myb mediated functions, and therefore have an impact on erythroid differentiation.

Bibliographie / References

  1. Zhao, Q., Rank, G., Tan, Y.T., Li, H., Moritz, R.L., Simpson, R.J., Cerruti, L., Curtis, D.J., Patel, D.J., Allis, C.D., Cunningham, J.M., and Jane, S.M. 2009. PRMT5‐mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nature structural & molecular biology 16(3): 304‐311.
  2. Miranda, T.B., Miranda, M., Frankel, A., and Clarke, S. 2004. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. The Journal of biological chemistry 279(22): 22902‐22907.
  3. Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S., and Bedford, M.T. 2002. The novel human protein arginine N‐methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. The Journal of biological chemistry 277(5): 3537‐3543.
  4. Luscombe, N.M., Laskowski, R.A., and Thornton, J.M. 2001. Amino acid‐base interactions: a three‐dimensional analysis of protein‐DNA interactions at an atomic level. Nucleic acids research 29(13): 2860‐2874.
  5. Yamkamon, V., Ivanova, O., Braas, D., Chayka, O., Patmasiriwat, P., and Klempnauer, K.H. 2008. A dual activation mechanism for Myb‐responsive genes in myelomonocytic cells. Blood cells, molecules & diseases 40(2): 219‐226.
  6. Ruthenburg, A.J., Li, H., Patel, D.J., and Allis, C.D. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nature reviews 8(12): 983‐994.
  7. Iberg, A.N., Espejo, A., Cheng, D., Kim, D., Michaud‐Levesque, J., Richard, S., and Bedford, M.T. 2008. Arginine methylation of the histone H3 tail impedes effector binding. The Journal of biological chemistry 283(6): 3006‐3010.
  8. Braganca, J., Swingler, T., Marques, F.I., Jones, T., Eloranta, J.J., Hurst, H.C., Shioda, T., and Bhattacharya, S. 2002. Human CREB‐binding protein/p300‐interacting transactivator with ED‐rich tail (CITED) 4, a new member of the CITED family, functions as a co‐ activator for transcription factor AP‐2. The Journal of biological chemistry 277(10): 8559‐8565.
  9. Teyssier, C., Chen, D., and Stallcup, M.R. 2002. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function.
  10. Zhang, Y., Ng, H.H., Erdjument‐Bromage, H., Tempst, P., Bird, A., and Reinberg, D. 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & development 13(15): 1924‐1935.
  11. Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument‐Bromage, H., Allis, C.D., Tempst, P., and Nimer, S.D. 2008. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes & development 22(5): 640‐653.
  12. Hennighausen, L. and Robinson, G.W. 2008. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes & development 22(6): 711‐721.
  13. Schultz, D.C., Friedman, J.R., and Rauscher, F.J., 3rd. 2001. Targeting histone deacetylase complexes via KRAB‐zinc finger proteins: the PHD and bromodomains of KAP‐1 form a cooperative unit that recruits a novel isoform of the Mi‐2alpha subunit of NuRD.
  14. Ness, S.A., Kowenz‐Leutz, E., Casini, T., Graf, T., and Leutz, A. 1993. Myb and NF‐M: combinatorial activators of myeloid genes in heterologous cell types. Genes & development 7(5): 749‐759.
  15. Boyer, L.A., Langer, M.R., Crowley, K.A., Tan, S., Denu, J.M., and Peterson, C.L. 2002. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular cell 10(4): 935‐942.
  16. Chen, S.L., Loffler, K.A., Chen, D., Stallcup, M.R., and Muscat, G.E. 2002. The coactivator‐ associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor‐2. J Biol Chem 277(6): 4324‐4333.
  17. A novel WD repeat protein component of the methylosome binds Sm proteins.
  18. Gewirtz, A.M. and Calabretta, B. 1988. A c‐myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science (New York, NY 242(4883): 1303‐1306.
  19. Lee, Y.H., Campbell, H.D., and Stallcup, M.R. 2004. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol Cell Biol 24(5): 2103‐2117.
  20. Raijmakers, R., Zendman, A.J., Egberts, W.V., Vossenaar, E.R., Raats, J., Soede‐Huijbregts, C., Rutjes, F.P., van Veelen, P.A., Drijfhout, J.W., and Pruijn, G.J. 2007. Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. Journal of molecular biology 367(4): 1118‐1129.
  21. Hong, H., Kao, C., Jeng, M.H., Eble, J.N., Koch, M.O., Gardner, T.A., Zhang, S., Li, L., Pan, C.X., Hu, Z., MacLennan, G.T., and Cheng, L. 2004. Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen‐independent status. Cancer 101(1): 83‐89.
  22. Li, H., Ahonen, T.J., Alanen, K., Xie, J., LeBaron, M.J., Pretlow, T.G., Ealley, E.L., Zhang, Y., Nurmi, M., Singh, B., Martikainen, P.M., and Nevalainen, M.T. 2004. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer research 64(14): 4774‐4782.
  23. Mucenski, M.L., McLain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Jr., and Potter, S.S. 1991. A functional c‐myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65(4): 677‐689.
  24. Xu, W., Cho, H., Kadam, S., Banayo, E.M., Anderson, S., Yates, J.R., 3rd, Emerson, B.M., and Evans, R.M. 2004. A methylation‐mediator complex in hormone signaling. Genes & development 18(2): 144‐156.
  25. Wade, P.A., Jones, P.L., Vermaak, D., and Wolffe, A.P. 1998. A multiple subunit Mi‐2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8(14): 843‐846.
  26. Hou, J., Schindler, U., Henzel, W.J., Ho, T.C., Brasseur, M., and McKnight, S.L. 1994. An interleukin‐4‐induced transcription factor: IL‐4 Stat. Science (New York, NY 265(5179): 1701‐1706.
  27. Henry, M.F. and Silver, P.A. 1996. A novel methyltransferase (Hmt1p) modifies poly(A)+‐ RNA‐binding proteins. Molecular and cellular biology 16(7): 3668‐3678.
  28. Underhill, C., Qutob, M.S., Yee, S.P., and Torchia, J. 2000. A novel nuclear receptor corepressor complex, N‐CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP‐1. The Journal of biological chemistry 275(51): 40463‐40470.
  29. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Analytical biochemistry 72: 248‐254.
  30. Komyod, W., Bauer, U.M., Heinrich, P.C., Haan, S., and Behrmann, I. 2005. Are STATS arginine‐methylated? The Journal of biological chemistry 280(23): 21700‐21705. Kowenz‐Leutz, E. and Leutz, A. 1999. A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Molecular cell 4(5): 735‐743.
  31. Calnan, B., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A. 1991. Arginine‐mediated RNA recognition: the arginine fork. Science (New York, NY 252(5009): 1167‐1171.
  32. Bedford, M.T. and Richard, S. 2005. Arginine methylation an emerging regulator of protein function. Molecular cell 18(3): 263‐272.
  33. Hughes, R.M. and Waters, M.L. 2006. Arginine methylation in a beta‐hairpin peptide: implications for Arg‐pi interactions, DeltaCp(o), and the cold denatured state. Journal of the American Chemical Society 128(39): 12735‐12742.
  34. Meissner, T., Krause, E., Lodige, I., and Vinkemeier, U. 2004. Arginine methylation of STAT1: a reassessment. Cell 119(5): 587‐589; discussion 589‐590.
  35. Arginine methylation of STAT1 modulates IFNalpha/beta‐induced transcription. Cell 104(5): 731‐741.
  36. Balint, B.L., Szanto, A., Madi, A., Bauer, U.M., Gabor, P., Benko, S., Puskas, L.G., Davies, P.J., and Nagy, L. 2005. Arginine methylation provides epigenetic transcription memory for retinoid‐induced differentiation in myeloid cells. Molecular and cellular biology 25(13): 5648‐5663.
  37. Boisvert, F.M. and Richard, S. 2004. Arginine methylation regulates the cytokine response. Molecular cell 15(4): 492‐494.
  38. Covic, M., Hassa, P.O., Saccani, S., Buerki, C., Meier, N.I., Lombardi, C., Imhof, R., Bedford, M.T., Natoli, G., and Hottiger, M.O. 2005. Arginine methyltransferase CARM1 is a Promotor‐specific regulator of NF‐kappaB‐dependent gene expression. EMBO J 24(1): 85‐96.
  39. Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J., and Ruley, H.E. 2000. Arginine N‐ methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Molecular and cellular biology 20(13): 4859‐ 4869.
  40. Jia, C.P., Chen, M.J., Huang, S.Z., and Zeng, Y.T. 2002. [A study of inductive effect of hemin on expression of the beta‐globin genes in K562 cells]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 24(4): 399‐402.
  41. Xu, W., Chen, H., Du, K., Asahara, H., Tini, M., Emerson, B.M., Montminy, M., and Evans, R.M. 2001. A transcriptional switch mediated by cofactor methylation. Science (New York, NY 294(5551): 2507‐2511.
  42. Zhang, M.Y., Harhaj, E.W., Bell, L., Sun, S.C., and Miller, B.A. 1998a. Bcl‐3 expression and nuclear translocation are induced by granulocyte‐macrophage colony‐stimulating factor and erythropoietin in proliferating human erythroid precursors. Blood 92(4): 1225‐1234.
  43. Ancelin, K., Lange, U.C., Hajkova, P., Schneider, R., Bannister, A.J., Kouzarides, T., and Surani, M.A. 2006. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature cell biology 8(6): 623‐630.
  44. Yadav, N., Cheng, D., Richard, S., Morel, M., Iyer, V.R., Aldaz, C.M., and Bedford, M.T. 2008. CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO reports 9(2): 193‐198.
  45. Frietze, S., Lupien, M., Silver, P.A., and Brown, M. 2008. CARM1 regulates estrogen‐ stimulated breast cancer growth through up‐regulation of E2F1. Cancer research 68(1): 301‐306.
  46. Fujiwara, T., Mori, Y., Chu, D.L., Koyama, Y., Miyata, S., Tanaka, H., Yachi, K., Kubo, T., Yoshikawa, H., and Tohyama, M. 2006. CARM1 regulates proliferation of PC12 cells by methylating HuD. Molecular and cellular biology 26(6): 2273‐2285. Ganesh, L., Yoshimoto, T., Moorthy, N.C., Akahata, W., Boehm, M., Nabel, E.G., and Nabel, G.J. 2006. Protein methyltransferase 2 inhibits NF‐kappaB function and promotes apoptosis. Molecular and cellular biology 26(10): 3864‐3874.
  47. Schneider, U. and Schwenk, H.U. 1977. Characterization of "T" and "non‐T" cell lines established from children with acute lymphoblastic leukemia and non‐Hodgkin lymphoma after leukemic transformation. Haematology and blood transfusion 20: 265‐269.
  48. Hall, J.A. and Georgel, P.T. 2007. CHD proteins: a diverse family with strong ties. Biochemistry and cell biology = Biochimie et biologie cellulaire 85(4): 463‐476.
  49. Beug, H., von Kirchbach, A., Doderlein, G., Conscience, J.F., and Graf, T. 1979. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18(2): 375‐390. Bjornstrom, L., Kilic, E., Norman, M., Parker, M.G., and Sjoberg, M. 2001. Cross‐talk between Stat5b and estrogen receptor‐alpha and ‐beta in mammary epithelial cells. Journal of molecular endocrinology 27(1): 93‐106.
  50. Tong, J.K., Hassig, C.A., Schnitzler, G.R., Kingston, R.E., and Schreiber, S.L. 1998. Chromatin deacetylation by an ATP‐dependent nucleosome remodelling complex. Nature 395(6705): 917‐921.
  51. Fryer, C.J. and Archer, T.K. 1998. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393(6680): 88‐91.
  52. Shin, D.H., Li, S.H., Chun, Y.S., Huang, L.E., Kim, M.S., and Park, J.W. 2008. CITED2 mediates the paradoxical responses of HIF‐1alpha to proteasome inhibition. Oncogene 27(13): 1939‐1944.
  53. Jiang, J., Best, S., Menzel, S., Silver, N., Lai, M.I., Surdulescu, G.L., Spector, T.D., and Thein, S.L. 2006. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 108(3): 1077‐1083.
  54. El Messaoudi, S., Fabbrizio, E., Rodriguez, C., Chuchana, P., Fauquier, L., Cheng, D., Theillet, C., Vandel, L., Bedford, M.T., and Sardet, C. 2006. Coactivator‐associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proceedings of the National Academy of Sciences of the United States of America 103(36): 13351‐13356.
  55. Collins, S.J., Gallo, R.C., and Gallagher, R.E. 1977. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270(5635): 347‐349.
  56. Stallcup, M.R., Chen, D., Koh, S.S., Ma, H., Lee, Y.H., Li, H., Schurter, B.T., and Aswad, D.W. 2000. Co‐operation between protein‐acetylating and protein‐methylating co‐ activators in transcriptional activation. Biochemical Society transactions 28(4): 415‐ 418.
  57. Greig, K.T., Carotta, S., and Nutt, S.L. 2008. Critical roles for c‐Myb in hematopoietic progenitor cells. Seminars in immunology 20(4): 247‐256.
  58. Daujat, S., Bauer, U.M., Shah, V., Turner, B., Berger, S., and Kouzarides, T. 2002. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12(24): 2090‐2097.
  59. Singh, V., Miranda, T.B., Jiang, W., Frankel, A., Roemer, M.E., Robb, V.A., Gutmann, D.H., Herschman, H.R., Clarke, S., and Newsham, I.F. 2004. DAL‐1/4.1B tumor suppressor interacts with protein arginine N‐methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene 23(47): 7761‐7771.
  60. Murawska, M., Kunert, N., van Vugt, J., Langst, G., Kremmer, E., Logie, C., and Brehm, A. 2008. dCHD3, a novel ATP‐dependent chromatin remodeler associated with sites of active transcription. Molecular and cellular biology 28(8): 2745‐2757.
  61. Boffa, L.C., Karn, J., Vidali, G., and Allfrey, V.G. 1977. Distribution of NG, NG,‐ dimethylarginine in nuclear protein fractions. Biochemical and biophysical research communications 74(3): 969‐976.
  62. Kunert, N., Wagner, E., Murawska, M., Klinker, H., Kremmer, E., and Brehm, A. 2009. dMec: a novel Mi‐2 chromatin remodelling complex involved in transcriptional repression. The EMBO journal 28(5): 533‐544.
  63. Flanagan, J.F., Mi, L.Z., Chruszcz, M., Cymborowski, M., Clines, K.L., Kim, Y., Minor, W., Rastinejad, F., and Khorasanizadeh, S. 2005. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438(7071): 1181‐1185.
  64. Kim, J.H., Yang, C.K., and Stallcup, M.R. 2006. Downstream signaling mechanism of the C‐ terminal activation domain of transcriptional coactivator CoCoA. Nucleic Acids Res 34(9): 2736‐2750. Kleinschmidt, M.A., Streubel, G., Samans, B., Krause, M., and Bauer, U.M. 2008. The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic Acids Res 36(10): 3202‐3213.
  65. C/EBPbeta induces chromatin opening at a cell‐type‐specific enhancer. Molecular and cellular biology 28(6): 2102‐2112.
  66. Eisbruch, A., Blick, M., Evinger‐Hodges, M.J., Beran, M., Andersson, B., Gutterman, J.U., and Kurzrock, R. 1988. Effect of differentiation‐inducing agents on oncogene expression in a chronic myelogenous leukemia cell line. Cancer 62(6): 1171‐1178.
  67. Kamano, H., Ohnishi, H., Tanaka, T., Ikeda, K., Okabe, A., and Irino, S. 1990. Effects of the antisense v‐myb' expression on K562 human leukemia cell proliferation and differentiation. Leukemia research 14(10): 831‐839.
  68. Corradini, F., Cesi, V., Bartella, V., Pani, E., Bussolari, R., Candini, O., and Calabretta, B. 2005. Enhanced proliferative potential of hematopoietic cells expressing degradation‐ resistant c‐Myb mutants. The Journal of biological chemistry 280(34): 30254‐30262.
  69. Kim, D., Lee, J., Cheng, D., Li, J., Carter, C., Richie, E., and Bedford, M.T. 2009. Enzymatic Activity Is Required for the in Vivo Functions of the Coactivator‐Associated Arginine Methyltransferase 1. J Biol Chem.
  70. Takeda, K., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiwamura, S., Nakanishi, K., Yoshida, N., Kishimoto, T., and Akira, S. 1996. Essential role of Stat6 in IL‐4 signalling. Nature 380(6575): 627‐630.
  71. Metivier, R., Penot, G., Hubner, M.R., Reid, G., Brand, H., Kos, M., and Gannon, F. 2003. Estrogen receptor‐alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target Promotor. Cell 115(6): 751‐763.
  72. Socolovsky, M., Fallon, A.E., Wang, S., Brugnara, C., and Lodish, H.F. 1999. Fetal anemia and apoptosis of red cell progenitors in Stat5a‐/‐5b‐/‐ mice: a direct role for Stat5 in Bcl‐ X(L) induction. Cell 98(2): 181‐191.
  73. ‐. 2007b. Functional insights from structures of coactivator‐associated arginine methyltransferase 1 domains. EMBO J 26(20): 4391‐4401.
  74. Igarashi, H., Kuwahara, K., Yoshida, M., Xing, Y., Maeda, K., Nakajima, K., and Sakaguchi, N. 2009. GANP suppresses the arginine methyltransferase PRMT5 regulating IL‐4‐ mediated STAT6‐signaling to IgE production in B cells. Molecular immunology 46(6): 1031‐1041.
  75. Sasaki, D., Kosunago, S., Mikami, T., Matsumoto, T., and Suzuki, M. 1994. Growth‐inhibition by hemin in K562 human leukemic cells is related to hemoglobin‐producing activity. Biological & pharmaceutical bulletin 17(5): 586‐590.
  76. Robin‐Lespinasse, Y., Sentis, S., Kolytcheff, C., Rostan, M.C., Corbo, L., and Le Romancer, M. 2007. hCAF1, a new regulator of PRMT1‐dependent arginine methylation. Journal of cell science 120(Pt 4): 638‐647.
  77. Kaminski, A., Welters, H.J., Kaminski, E.R., and Morgan, N.G. Human and rodent pancreatic beta‐cells express IL‐4 receptors and IL‐4 protects against beta‐cell apoptosis by activation of the PI3K and JAK/STAT pathways. Bioscience reports 30(3): 169‐175.
  78. Lozzio, C.B. and Lozzio, B.B. 1975. Human chronic myelogenous leukemia cell‐line with positive Philadelphia chromosome. Blood 45(3): 321‐334.
  79. Wang, Y., Wysocka, J., Sayegh, J., Lee, Y.H., Perlin, J.R., Leonelli, L., Sonbuchner, L.S., McDonald, C.H., Cook, R.G., Dou, Y., Roeder, R.G., Clarke, S., Stallcup, M.R., Allis, C.D., and Coonrod, S.A. 2004. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science (New York, NY 306(5694): 279‐283.
  80. Herrmann, F., Pably, P., Eckerich, C., Bedford, M.T., and Fackelmayer, F.O. 2009. Human protein arginine methyltransferases in vivo‐‐distinct properties of eight canonical members of the PRMT family. Journal of cell science 122(Pt 5): 667‐677.
  81. Pal, S., Vishwanath, S.N., Erdjument‐Bromage, H., Tempst, P., and Sif, S. 2004. Human SWI/SNF‐associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Molecular and cellular biology 24(21): 9630‐9645. Pal, S., Yun, R., Datta, A., Lacomis, L., Erdjument‐Bromage, H., Kumar, J., Tempst, P., and Sif, S. 2003. mSin3A/histone deacetylase 2‐ and PRMT5‐containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Molecular and cellular biology 23(21): 7475‐7487.
  82. Scott, H.S., Antonarakis, S.E., Lalioti, M.D., Rossier, C., Silver, P.A., and Henry, M.F. 1998. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48(3): 330‐340.
  83. Stielow, B., Sapetschnig, A., Kruger, I., Kunert, N., Brehm, A., Boutros, M., and Suske, G. 2008. Identification of SUMO‐dependent chromatin‐associated transcriptional repression components by a genome‐wide RNAi screen. Molecular cell 29(6): 742‐ 754.
  84. Kim, J., Sif, S., Jones, B., Jackson, A., Koipally, J., Heller, E., Winandy, S., Viel, A., Sawyer, A., Ikeda, T., Kingston, R., and Georgopoulos, K. 1999. Ikaros DNA‐binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10(3): 345‐ 355.
  85. Rolling, C., Treton, D., Pellegrini, S., Galanaud, P., and Richard, Y. 1996. IL4 and IL13 receptors share the gamma c chain and activate STAT6, STAT3 and STAT5 proteins in normal human B cells. FEBS letters 393(1): 53‐56.
  86. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G‐250 and R‐250. Electrophoresis 9(6): 255‐262.
  87. Rowley, P.T., Ohlsson‐Wilhelm, B.M., Farley, B.A., and LaBella, S. 1981. Inducers of erythroid differentiation in K562 human leukemia cells. Experimental hematology 9(1): 32‐37.
  88. Dean, A., Erard, F., Schneider, A.P., and Schechter, A.N. 1981. Induction of hemoglobin accumulation in human K562 cells by hemin is reversible. Science (New York, NY 212(4493): 459‐461.
  89. Ahonen, T.J., Xie, J., LeBaron, M.J., Zhu, J., Nurmi, M., Alanen, K., Rui, H., and Nevalainen, M.T. 2003. Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. The Journal of biological chemistry 278(29): 27287‐27292.
  90. Majumder, S., Liu, Y., Ford, O.H., 3rd, Mohler, J.L., and Whang, Y.E. 2006. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66(12): 1292‐1301.
  91. Altschuler, L., Wook, J.O., Gurari, D., Chebath, J., and Revel, M. 1999. Involvement of receptor‐bound protein methyltransferase PRMT1 in antiviral and antiproliferative effects of type I interferons. J Interferon Cytokine Res 19(2): 189‐195. An, W., Kim, J., and Roeder, R.G. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117(6): 735‐748.
  92. Shimoda, K., van Deursen, J., Sangster, M.Y., Sarawar, S.R., Carson, R.T., Tripp, R.A., Chu, C., Quelle, F.W., Nosaka, T., Vignali, D.A., Doherty, P.C., Grosveld, G., Paul, W.E., and Ihle, J.N. 1996. Lack of IL‐4‐induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380(6575): 630‐633.
  93. Li, H., Park, S., Kilburn, B., Jelinek, M.A., Henschen‐Edman, A., Aswad, D.W., Stallcup, M.R., and Laird‐Offringa, I.A. 2002. Lipopolysaccharide‐induced methylation of HuR, an mRNA‐stabilizing protein, by CARM1. Coactivator‐associated arginine methyltransferase. The Journal of biological chemistry 277(47): 44623‐44630.
  94. Kim, J., Lee, J., Yadav, N., Wu, Q., Carter, C., Richard, S., Richie, E., and Bedford, M.T. 2004. Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP‐regulated phosphoprotein and deregulated early T cell development. The Journal of biological chemistry 279(24): 25339‐25344.
  95. Pal, S., Baiocchi, R.A., Byrd, J.C., Grever, M.R., Jacob, S.T., and Sif, S. 2007. Low levels of miR‐ 92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. The EMBO journal 26(15): 3558‐3569.
  96. Gangaraju, V.K. and Bartholomew, B. 2007. Mechanisms of ATP dependent chromatin remodeling. Mutation research 618(1‐2): 3‐17.
  97. Strahl, B.D., Briggs, S.D., Brame, C.J., Caldwell, J.A., Koh, S.S., Ma, H., Cook, R.G., Shabanowitz, J., Hunt, D.F., Stallcup, M.R., and Allis, C.D. 2001. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 11(12): 996‐1000.
  98. Kwak, Y.T., Guo, J., Prajapati, S., Park, K.J., Surabhi, R.M., Miller, B., Gehrig, P., and Gaynor, R.B. 2003. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Molecular cell 11(4): 1055‐1066.
  99. Hidaka, Y., Hagiwara, T., and Yamada, M. 2005. Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV. FEBS letters 579(19): 4088‐4092. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X., and Xu, W. 2007. Phosphorylation‐mediated inactivation of coactivator‐associated arginine methyltransferase 1. Proc Natl Acad Sci U S A 104(30): 12318‐12323.
  100. Shimono, K., Shimono, Y., Shimokata, K., Ishiguro, N., and Takahashi, M. 2005. Microspherule protein 1, Mi‐2beta, and RET finger protein associate in the nucleolus and up‐ regulate ribosomal gene transcription. The Journal of biological chemistry 280(47): 39436‐39447.
  101. Leary, J.F., Ohlsson‐Wilhelm, B.M., Giuliano, R., LaBella, S., Farley, B., and Rowley, P.T. 1987. Multipotent human hematopoietic cell line K562: lineage‐specific constitutive and inducible antigens. Leukemia research 11(9): 807‐815.
  102. Introna, M., Golay, J., Frampton, J., Nakano, T., Ness, S.A., and Graf, T. 1990. Mutations in v‐ myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell 63(6): 1289‐1297.
  103. Dudek, H., Tantravahi, R.V., Rao, V.N., Reddy, E.S., and Reddy, E.P. 1992. Myb and Ets proteins cooperate in transcriptional activation of the mim‐1 Promotor. Proceedings of the National Academy of Sciences of the United States of America 89(4): 1291‐ 1295.
  104. Ramsay, R.G. and Gonda, T.J. 2008. MYB function in normal and cancer cells. Nature reviews 8(7): 523‐534.
  105. Srinivasan, R., Mager, G.M., Ward, R.M., Mayer, J., and Svaren, J. 2006. NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. The Journal of biological chemistry 281(22): 15129‐ 15137.
  106. Paik, W.K.a.K., S. 1980. Natural occurence of varous methylated amino acid derivates. John Wiley & Sons, New York.
  107. Litterst, C.M., Kliem, S., Marilley, D., and Pfitzner, E. 2003. NCoA‐1/SRC‐1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha‐helical region of the STAT5 transactivation domain. The Journal of biological chemistry 278(46): 45340‐ 45351.
  108. Shetzline, S.E., Rallapalli, R., Dowd, K.J., Zou, S., Nakata, Y., Swider, C.R., Kalota, A., Choi, J.K., and Gewirtz, A.M. 2004. Neuromedin U: a Myb‐regulated autocrine growth factor for human myeloid leukemias. Blood 104(6): 1833‐1840.
  109. Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Cote, J., and Wang, W. 1998. NURD, a novel complex with both ATP‐dependent chromatin‐remodeling and histone deacetylase activities. Molecular cell 2(6): 851‐861.
  110. Liu, F., Lei, W., O'Rourke, J.P., and Ness, S.A. 2006. Oncogenic mutations cause dramatic, qualitative changes in the transcriptional activity of c‐Myb. Oncogene 25(5): 795‐805.
  111. Pfitzner, E., Jahne, R., Wissler, M., Stoecklin, E., and Groner, B. 1998. p300/CREB‐binding protein enhances the prolactin‐mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the 8. Literaturverzeichnis 188
  112. Najbauer, J., Johnson, B.A., Young, A.L., and Aswad, D.W. 1993. Peptides with sequences similar to glycine, arginine‐rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. The Journal of biological chemistry 268(14): 10501‐10509.
  113. Sparmann, A. and van Lohuizen, M. 2006. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6(11): 846‐856. Sridharan, R. and Smale, S.T. 2007. Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes. The Journal of biological chemistry 282(41): 30227‐30238.
  114. Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S., and Herschman, H.R. 2000. PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. The Journal of biological chemistry 275(11): 7723‐7730.
  115. Tang, J., Gary, J.D., Clarke, S., and Herschman, H.R. 1998. PRMT 3, a type I protein arginine N‐ methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. The Journal of biological chemistry 273(27): 16935‐16945.
  116. Rho, J., Choi, S., Seong, Y.R., Cho, W.K., Kim, S.H., and Im, D.S. 2001. Prmt5, which forms distinct homo‐oligomers, is a member of the protein‐arginine methyltransferase family. The Journal of biological chemistry 276(14): 11393‐11401.
  117. Lee, J., Sayegh, J., Daniel, J., Clarke, S., and Bedford, M.T. 2005. PRMT8, a new membrane‐ bound tissue‐specific member of the protein arginine methyltransferase family. The Journal of biological chemistry 280(38): 32890‐32896.
  118. Cheung, N., Chan, L.C., Thompson, A., Cleary, M.L., and So, C.W. 2007. Protein arginine‐ methyltransferase‐dependent oncogenesis. Nature cell biology 9(10): 1208‐1215.
  119. Paik, W.K. and Kim, S. 1968. Protein methylase I. Purification and properties of the enzyme. The Journal of biological chemistry 243(9): 2108‐2114.
  120. Rawal, N., Rajpurohit, R., Paik, W.K., and Kim, S. 1994. Purification and characterization of S‐ adenosylmethionine‐protein‐arginine N‐methyltransferase from rat liver. The Biochemical journal 300 ( Pt 2): 483‐489.
  121. Wang, H., Cao, R., Xia, L., Erdjument‐Bromage, H., Borchers, C., Tempst, P., and Zhang, Y. 2001a. Purification and functional characterization of a histone H3‐lysine 4‐specific methyltransferase. Molecular cell 8(6): 1207‐1217.
  122. Ghosh, S.K., Paik, W.K., and Kim, S. 1988. Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein‐ and histone‐specific enzyme. The Journal of biological chemistry 263(35): 19024‐19033.
  123. Liem, H.H., Cardenas, F., Tavassoli, M., Poh‐Fitzpatrick, M.B., and Muller‐Eberhard, U. 1979. Quantitative determination of hemoglobin and cytochemical staining for peroxidase using 3,3',5,5'‐tetramethylbenzidine dihydrochloride, a safe substitute for benzidine. Analytical biochemistry 98(2): 388‐393.
  124. Sayegh, J., Webb, K., Cheng, D., Bedford, M.T., and Clarke, S.G. 2007. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N‐terminal domain. The Journal of biological chemistry 282(50): 36444‐36453.
  125. Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W., and Stallcup, M.R. 1999. Regulation of transcription by a protein methyltransferase. Science (New York, NY 284(5423): 2174‐2177.
  126. Swiercz, R., Cheng, D., Kim, D., and Bedford, M.T. 2007. Ribosomal protein rpS2 is hypomethylated in PRMT3‐deficient mice. The Journal of biological chemistry 282(23): 16917‐16923.
  127. Swiercz, R., Person, M.D., and Bedford, M.T. 2005. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). The Biochemical journal 386(Pt 1): 85‐91.
  128. Minowada, J., Onuma, T., and Moore, G.E. 1972. Rosette‐forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus‐derived lymphocytes. Journal of the National Cancer Institute 49(3): 891‐895.
  129. Park, S.H., Yamashita, H., Rui, H., and Waxman, D.J. 2001. Serine phosphorylation of GH‐ activated signal transducer and activator of transcription 5a (STAT5a) and STAT5b: impact on STAT5 transcriptional activity. Molecular endocrinology (Baltimore, Md 15(12): 2157‐2171. Pastorcic, M. and Das, H.K. 2007. The C‐terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 gene. The FEBS journal 274(6): 1434‐1448.
  130. Feng, Q., Yi, P., Wong, J., and O'Malley, B.W. 2006. Signaling within a coactivator complex: methylation of SRC‐3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26(21): 7846‐7857.
  131. Wittig, I. and Groner, B. 2005. Signal transducer and activator of transcription 5 (STAT5), a crucial regulator of immune and cancer cells. Current drug targets 5(4): 449‐463.
  132. Harju‐Baker, S., Costa, F.C., Fedosyuk, H., Neades, R., and Peterson, K.R. 2008. Silencing of Agamma‐globin gene expression during adult definitive erythropoiesis mediated by GATA‐1‐FOG‐1‐Mi2 complex binding at the ‐566 GATA site. Molecular and cellular biology 28(10): 3101‐3113.
  133. Yadav, N., Lee, J., Kim, J., Shen, J., Hu, M.C., Aldaz, C.M., and Bedford, M.T. 2003. Specific protein methylation defects and gene expression perturbations in coactivator‐ associated arginine methyltransferase 1‐deficient mice. Proceedings of the National Academy of Sciences of the United States of America 100(11): 6464‐6468.
  134. Sexl, V., Piekorz, R., Moriggl, R., Rohrer, J., Brown, M.P., Bunting, K.D., Rothammer, K., Roussel, M.F., and Ihle, J.N. 2000. Stat5a/b contribute to interleukin 7‐induced B‐cell precursor expansion, but abl‐ and bcr/abl‐induced transformation are independent of stat5. Blood 96(6): 2277‐2283.
  135. Stat5a is mandatory for adult mammary gland development and lactogenesis.
  136. Moriggl, R., Topham, D.J., Teglund, S., Sexl, V., McKay, C., Wang, D., Hoffmeyer, A., van Deursen, J., Sangster, M.Y., Bunting, K.D., Grosveld, G.C., and Ihle, J.N. 1999. Stat5 is required for IL‐2‐induced cell cycle progression of peripheral T cells. Immunity 10(2): 249‐259.
  137. Stat5‐mediated suppression of the glucocorticoid response. Molecular endocrinology (Baltimore, Md 12(10): 1582‐1593.
  138. Paukku, K. and Silvennoinen, O. 2004. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine & growth factor reviews 15(6): 435‐455.
  139. Levy, D.E. and Darnell, J.E., Jr. 2002. Stats: transcriptional control and biological impact. Nature reviews 3(9): 651‐662.
  140. Reinberg, D., Chuikov, S., Farnham, P., Karachentsev, D., Kirmizis, A., Kuzmichev, A., Margueron, R., Nishioka, K., Preissner, T.S., Sarma, K., Abate‐Shen, C., Steward, R., and Vaquero, A. 2004. Steps toward understanding the inheritance of repressive methyl‐lysine marks in histones. Cold Spring Harbor symposia on quantitative biology 69: 171‐182.
  141. Zhang, X. and Cheng, X. 2003. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11(5): 509‐520.
  142. Koh, S.S., Li, H., Lee, Y.H., Widelitz, R.B., Chuong, C.M., and Stallcup, M.R. 2002. Synergistic coactivator function by coactivator‐associated arginine methyltransferase (CARM) 1 and beta‐catenin with two different classes of DNA‐binding transcriptional activators. J Biol Chem 277(29): 26031‐26035.
  143. Koh, S.S., Chen, D., Lee, Y.H., and Stallcup, M.R. 2001. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 276(2): 1089‐1098.
  144. Chen, D., Huang, S.M., and Stallcup, M.R. 2000. Synergistic, p160 coactivator‐dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275(52): 40810‐40816.
  145. Naeem, H., Cheng, D., Zhao, Q., Underhill, C., Tini, M., Bedford, M.T., and Torchia, J. 2007. The activity and stability of the transcriptional coactivator p/CIP/SRC‐3 are regulated by CARM1‐dependent methylation. Mol Cell Biol 27(1): 120‐134.
  146. Cheng, D., Cote, J., Shaaban, S., and Bedford, M.T. 2007. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Molecular cell 25(1): 71‐83.
  147. Yoshimoto, T., Boehm, M., Olive, M., Crook, M.F., San, H., Langenickel, T., and Nabel, E.G. 2006. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Experimental cell research 312(11): 2040‐2053.
  148. Clapier, C.R. and Cairns, B.R. 2009. The biology of chromatin remodeling complexes. Annual review of biochemistry 78: 273‐304.
  149. Marfella, C.G. and Imbalzano, A.N. 2007. The Chd family of chromatin remodelers. Mutation research 618(1‐2): 30‐40.
  150. Williams, C.J., Naito, T., Arco, P.G., Seavitt, J.R., Cashman, S.M., De Souza, B., Qi, X., Keables, P., Von Andrian, U.H., and Georgopoulos, K. 2004. The chromatin remodeler Mi‐ 2beta is required for CD4 expression and T cell development. Immunity 20(6): 719‐ 733.
  151. Saether, T., Berge, T., Ledsaak, M., Matre, V., Alm‐Kristiansen, A.H., Dahle, O., Aubry, F., and Gabrielsen, O.S. 2007. The chromatin remodeling factor Mi‐2alpha acts as a novel co‐ activator for human c‐Myb. The Journal of biological chemistry 282(19): 13994‐ 14005.
  152. Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S., and Reinberg, D. 1998b. The dermatomyositis‐ specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95(2): 279‐289.
  153. Young, P.J., Francis, J.W., Lince, D., Coon, K., Androphy, E.J., and Lorson, C.L. 2003. The Ewing's sarcoma protein interacts with the Tudor domain of the survival motor neuron protein. Brain research 119(1): 37‐49.
  154. Choi, H.K., Choi, K.C., Oh, S.Y., Kang, H.B., Lee, Y.H., Haam, S., Ahn, Y.H., Kim, K.S., Kim, K., and Yoon, H.G. 2007. The functional role of the CARM1‐SNF5 complex and its associated HMT activity in transcriptional activation by thyroid hormone receptor. Exp Mol Med 39(4): 544‐555.
  155. Lacroix, M., Messaoudi, S.E., Rodier, G., Le Cam, A., Sardet, C., and Fabbrizio, E. 2008. The histone‐binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO reports 9(5): 452‐458.
  156. Pollack, B.P., Kotenko, S.V., He, W., Izotova, L.S., Barnoski, B.L., and Pestka, S. 1999. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. The Journal of biological chemistry 274(44): 31531‐31542.
  157. Denslow, S.A. and Wade, P.A. 2007. The human Mi‐2/NuRD complex and gene regulation. Oncogene 26(37): 5433‐5438.
  158. Matre, V., Hovring, P.I., Fjeldheim, A.K., Helgeland, L., Orvain, C., Andersson, K.B., Gautvik, K.M., and Gabrielsen, O.S. 2003. The human neuroendocrine thyrotropin‐releasing hormone receptor Promotor is activated by the haematopoietic transcription factor c‐Myb. The Biochemical journal 372(Pt 3): 851‐859.
  159. Batsche, E., Yaniv, M., and Muchardt, C. 2006. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nature structural & molecular biology 13(1): 22‐29.
  160. Lischke, A., Moriggl, R., Brandlein, S., Berchtold, S., Kammer, W., Sebald, W., Groner, B., Liu, X., Hennighausen, L., and Friedrich, K. 1998. The interleukin‐4 receptor activates STAT5 by a mechanism that relies upon common gamma‐chain. The Journal of biological chemistry 273(47): 31222‐31229.
  161. Margueron, R., Trojer, P., and Reinberg, D. 2005. The key to development: interpreting the histone code? Current opinion in genetics & development 15(2): 163‐176.
  162. Hou, Z., Peng, H., Ayyanathan, K., Yan, K.P., Langer, E.M., Longmore, G.D., and Rauscher, F.J., 3rd. 2008. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL‐dependent transcriptional repression. Molecular and cellular biology 28(10): 3198‐3207.
  163. Seelig, H.P., Moosbrugger, I., Ehrfeld, H., Fink, T., Renz, M., and Genth, E. 1995. The major dermatomyositis‐specific Mi‐2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis and rheumatism 38(10): 1389‐1399.
  164. Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S., and Herschman, H.R. 1996. The mammalian immediate‐early TIS21 protein and the leukemia‐associated BTG1 protein interact with a protein‐arginine N‐methyltransferase. The Journal of biological chemistry 271(25): 15034‐15044.
  165. Odorizzi, G. 2006. The multiple personalities of Alix. Journal of cell science 119(Pt 15): 3025‐ 3032.
  166. Oh, I.H. and Reddy, E.P. 1999. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18(19): 3017‐3033.
  167. Dacwag, C.S., Ohkawa, Y., Pal, S., Sif, S., and Imbalzano, A.N. 2007. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP‐ dependent chromatin remodeling. Molecular and cellular biology 27(1): 384‐394.
  168. Yoshida, T., Hazan, I., Zhang, J., Ng, S.Y., Naito, T., Snippert, H.J., Heller, E.J., Qi, X., Lawton, L.N., Williams, C.J., and Georgopoulos, K. 2008. The role of the chromatin remodeler Mi‐2beta in hematopoietic stem cell self‐renewal and multilineage differentiation. Genes & development 22(9): 1174‐1189.
  169. Weiss, V.H., McBride, A.E., Soriano, M.A., Filman, D.J., Silver, P.A., and Hogle, J.M. 2000. The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nature structural biology 7(12): 1165‐1171.
  170. Jelinic, P., Stehle, J.C., and Shaw, P. 2006. The testis‐specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS biology 4(11): e355.
  171. Ness, S.A., Marknell, A., and Graf, T. 1989. The v‐myb oncogene product binds to and activates the promyelocyte‐specific mim‐1 gene. Cell 59(6): 1115‐1125.
  172. Mitchell, J.B., Thornton, J.M., Singh, J., and Price, S.L. 1992. Towards an understanding of the arginine‐aspartate interaction. Journal of molecular biology 226(1): 251‐262.
  173. Dahle, O., Andersen, T.O., Nordgard, O., Matre, V., Del Sal, G., and Gabrielsen, O.S. 2003. Transactivation properties of c‐Myb are critically dependent on two SUMO‐1 acceptor sites that are conjugated in a PIASy enhanced manner. European journal of biochemistry / FEBS 270(6): 1338‐1348.
  174. transcriptional activating and repressing abilities. The Journal of biological chemistry 278(51): 51638‐51645.
  175. Nakagoshi, H., Kanei‐Ishii, C., Sawazaki, T., Mizuguchi, G., and Ishii, S. 1992. Transcriptional activation of the c‐myc gene by the c‐myb and B‐myb gene products. Oncogene 7(6): 1233‐1240.
  176. Tan, S.H., Dagvadorj, A., Shen, F., Gu, L., Liao, Z., Abdulghani, J., Zhang, Y., Gelmann, E.P., Zellweger, T., Culig, Z., Visakorpi, T., Bubendorf, L., Kirken, R.A., Karras, J., and Nevalainen, M.T. 2008. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer research 68(1): 236‐248.
  177. Lipsick, J.S. and Wang, D.M. 1999. Transformation by v‐Myb. Oncogene 18(19): 3047‐3055.
  178. Jenuwein, T. and Allis, C.D. 2001. Translating the histone code. Science (New York, NY 293(5532): 1074‐1080.
  179. Seelig, H.P., Renz, M., Targoff, I.N., Ge, Q., and Frank, M.B. 1996. Two forms of the major antigenic protein of the dermatomyositis‐specific Mi‐2 autoantigen. Arthritis and rheumatism 39(10): 1769‐1771.
  180. Ryme, J., Asp, P., Bohm, S., Cavellan, E., and Farrants, A.K. 2009. Variations in the composition of mammalian SWI/SNF chromatin remodelling complexes. Journal of cellular biochemistry 108(3): 565‐576.
  181. Chayka, O., Kintscher, J., Braas, D., and Klempnauer, K.H. 2005. v‐Myb mediates cooperation of a cell‐specific enhancer with the mim‐1 Promotor. Molecular and cellular biology 25(1): 499‐511.
  182. Slany, R.K. 2005. When epigenetics kills: MLL fusion proteins in leukemia. Hematological oncology 23(1): 1‐9.
  183. Grant, P.A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen‐ Hughes, T., Allis, C.D., Winston, F., Berger, S.L., and Workman, J.L. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes & development 11(13): 1640‐1650.
  184. Wei, Y., Horng, J.C., Vendel, A.C., Raleigh, D.P., and Lumb, K.J. 2003. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP. Biochemistry 42(23): 7044‐7049.
  185. Pal, S. and Sif, S. 2007. Interplay between chromatin remodelers and protein arginine methyltransferases. Journal of cellular physiology 213(2): 306‐315.
  186. Maurice, D., Hooper, J., Lang, G., and Weston, K. 2007. c‐Myb regulates lineage choice in developing thymocytes via its target gene Gata3. The EMBO journal 26(15): 3629‐ 3640.
  187. Guccione, E., Bassi, C., Casadio, F., Martinato, F., Cesaroni, M., Schuchlautz, H., Luscher, B., and Amati, B. 2007. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164): 933‐937.
  188. Berge, T., Matre, V., Brendeford, E.M., Saether, T., Luscher, B., and Gabrielsen, O.S. 2007. Revisiting a selection of target genes for the hematopoietic transcription factor c‐ Myb using chromatin immunoprecipitation and c‐Myb knockdown. Blood cells, molecules & diseases 39(3): 278‐286.
  189. Hong, W., Nakazawa, M., Chen, Y.Y., Kori, R., Vakoc, C.R., Rakowski, C., and Blobel, G.A. 2005. FOG‐1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA‐1. The EMBO journal 24(13): 2367‐2378.
  190. Cote, J. and Richard, S. 2005. Tudor domains bind symmetrical dimethylated arginines. The Journal of biological chemistry 280(31): 28476‐28483.
  191. Wu, Q., Bruce, A.W., Jedrusik, A., Ellis, P.D., Andrews, R.M., Langford, C.F., Glover, D.M., and Zernicka‐Goetz, M. 2009. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem cells (Dayton, Ohio) 27(11): 2637‐2645.
  192. Bauer, U.M., Daujat, S., Nielsen, S.J., Nightingale, K., and Kouzarides, T. 2002. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3(1): 39‐44.
  193. Schmidt, M., Nazarov, V., Stevens, L., Watson, R., and Wolff, L. 2000. Regulation of the resident chromosomal copy of c‐myc by c‐Myb is involved in myeloid leukemogenesis. Molecular and cellular biology 20(6): 1970‐1981.
  194. Literaturverzeichnis Abramovich, C., Yakobson, B., Chebath, J., and Revel, M. 1997. A protein‐arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. The EMBO journal 16(2): 260‐266.
  195. Huang, S., Litt, M., and Felsenfeld, G. 2005. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes & development 19(16): 1885‐1893.
  196. Armstrong, J.A., Papoulas, O., Daubresse, G., Sperling, A.S., Lis, J.T., Scott, M.P., and Tamkun, J.W. 2002. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. The EMBO journal 21(19): 5245‐5254.
  197. Chevillard‐Briet, M., Trouche, D., and Vandel, L. 2002. Control of CBP co‐activating activity by arginine methylation. The EMBO journal 21(20): 5457‐5466.
  198. Lee, Y.H., Koh, S.S., Zhang, X., Cheng, X., and Stallcup, M.R. 2002. Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol 22(11): 3621‐3632.
  199. Simic, R., Lindstrom, D.L., Tran, H.G., Roinick, K.L., Costa, P.J., Johnson, A.D., Hartzog, G.A., and Arndt, K.M. 2003. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. The EMBO journal 22(8): 1846‐1856.
  200. Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A., and Wong, J. 2003. A role for cofactor‐cofactor and cofactor‐histone interactions in targeting p300, SWI/SNF and Mediator for transcription. The EMBO journal 22(9): 2146‐2155.
  201. Barrero, M.J. and Malik, S. 2006. Two functional modes of a nuclear receptor‐recruited arginine methyltransferase in transcriptional activation. Molecular cell 24(2): 233‐ 243.
  202. Hsiao, P.W., Fryer, C.J., Trotter, K.W., Wang, W., and Archer, T.K. 2003. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin‐remodeling complex for transactivation. Molecular and cellular biology 23(17): 6210‐6220.
  203. Nakata, Y., Shetzline, S., Sakashita, C., Kalota, A., Rallapalli, R., Rudnick, S.I., Zhang, Y., Emerson, S.G., and Gewirtz, A.M. 2007. c‐Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Molecular and cellular biology 27(6): 2048‐2058.
  204. Bakker, W.J., van Dijk, T.B., Parren‐van Amelsvoort, M., Kolbus, A., Yamamoto, K., Steinlein, P., Verhaak, R.G., Mak, T.W., Beug, H., Lowenberg, B., and von Lindern, M. 2007. Differential regulation of Foxo3a target genes in erythropoiesis. Molecular and cellular biology 27(10): 3839‐3854.
  205. Fu, S.L. and Lipsick, J.S. 1996. FAETL motif required for leukemic transformation by v‐Myb. Journal of virology 70(8): 5600‐5610.
  206. Citro, G., Szczylik, C., Ginobbi, P., Zupi, G., and Calabretta, B. 1994. Inhibition of leukaemia cell proliferation by folic acid‐polylysine‐mediated introduction of c‐myb antisense oligodeoxynucleotides into HL‐60 cells. British journal of cancer 69(3): 463‐467.
  207. Yue, W.W., Hassler, M., Roe, S.M., Thompson‐Vale, V., and Pearl, L.H. 2007. Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J 26(20): 4402‐4412.
  208. Ivanova, O., Braas, D., and Klempnauer, K.H. 2007. Oncogenic point mutations in the Myb DNA‐binding domain alter the DNA‐binding properties of Myb at a physiological target gene. Nucleic acids research 35(21): 7237‐7247.
  209. Imada, K., Bloom, E.T., Nakajima, H., Horvath‐Arcidiacono, J.A., Udy, G.B., Davey, H.W., and Leonard, W.J. 1998. Stat5b is essential for natural killer cell‐mediated proliferation and cytolytic activity. The Journal of experimental medicine 188(11): 2067‐2074.
  210. Rosson, D. and O'Brien, T.G. 1995. Constitutive c‐myb expression in K562 cells inhibits induced erythroid differentiation but not tetradecanoyl phorbol acetate‐induced megakaryocytic differentiation. Molecular and cellular biology 15(2): 772‐779.
  211. Lidonnici, M.R., Corradini, F., Waldron, T., Bender, T.P., and Calabretta, B. 2008. Requirement of c‐Myb for p210(BCR/ABL)‐dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 111(9): 4771‐4779.
  212. Weber, S., Maass, F., Schuemann, M., Krause, E., Suske, G., and Bauer, U.M. 2009. PRMT1‐ mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes & development 23(1): 118‐132.
  213. Dacwag, C.S., Bedford, M.T., Sif, S., and Imbalzano, A.N. 2009. Distinct protein arginine methyltransferases promote ATP‐dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 29(7): 1909‐1921.
  214. Troffer‐Charlier, N., Cura, V., Hassenboehler, P., Moras, D., and Cavarelli, J. 2007a. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator‐associated arginine methyltransferase 1. Acta crystallographica 63(Pt 4): 330‐333.
  215. Yu, Z., Chen, T., Hebert, J., Li, E., and Richard, S. 2009. A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Molecular and cellular biology.
  216. Cheng, X., Collins, R.E., and Zhang, X. 2005. Structural and sequence motifs of protein (histone) methylation enzymes. Annual review of biophysics and biomolecular structure 34: 267‐294.
  217. Ho, P.C., Lin, Y.W., Tsui, Y.C., Gupta, P., and Wei, L.N. 2009. A negative regulatory pathway of GLUT4 trafficking in adipocyte: new function of RIP140 in the cytoplasm via AS160. Cell metabolism 10(6): 516‐523.
  218. Feng, Q., He, B., Jung, S.Y., Song, Y., Qin, J., Tsai, S.Y., Tsai, M.J., and O'Malley, B.W. 2009. Biochemical control of CARM1 enzymatic activity by phosphorylation. The Journal of biological chemistry 284(52): 36167‐36174.
  219. Klenow, H. and Henningsen, I. 1970. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proceedings of the National Academy of Sciences of the United States of America 65(1): 168‐175.
  220. Anfossi, G., Gewirtz, A.M., and Calabretta, B. 1989. An oligomer complementary to c‐myb‐ encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proceedings of the National Academy of Sciences of the United States of America 86(9): 3379‐3383.
  221. Musselman, C.A., Mansfield, R.E., Garske, A.L., Davrazou, F., Kwan, A.H., Oliver, S.S., O'Leary, H., Denu, J.M., Mackay, J.P., and Kutateladze, T.G. 2009. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. The Biochemical journal 423(2): 179‐187.
  222. Feng, Q. and Zhang, Y. 2001. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & development 15(7): 827‐832.
  223. Zhang, X., Zhou, L., and Cheng, X. 2000. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. The EMBO journal 19(14): 3509‐3519.
  224. Dignam, J.D., Lebovitz, R.M., and Roeder, R.G. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic acids research 11(5): 1475‐1489.
  225. Torres‐Padilla, M.E., Parfitt, D.E., Kouzarides, T., and Zernicka‐Goetz, M. 2007. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124): 214‐218.
  226. Bedford, M.T. and Clarke, S.G. 2009. Protein arginine methylation in mammals: who, what, and why. Molecular cell 33(1): 1‐13.
  227. Westin, E.H., Gallo, R.C., Arya, S.K., Eva, A., Souza, L.M., Baluda, M.A., Aaronson, S.A., and Wong‐Staal, F. 1982. Differential expression of the amv gene in human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America 79(7): 2194‐2198.
  228. Dean, A., Ley, T.J., Humphries, R.K., Fordis, M., and Schechter, A.N. 1983. Inducible transcription of five globin genes in K562 human leukemia cells. Proceedings of the National Academy of Sciences of the United States of America 80(18): 5515‐5519.
  229. Burk, O., Mink, S., Ringwald, M., and Klempnauer, K.H. 1993. Synergistic activation of the chicken mim‐1 gene by v‐myb and C/EBP transcription factors. The EMBO journal 12(5): 2027‐2038.
  230. Luisi‐DeLuca, C., Mitchell, T., Spriggs, D., and Kufe, D.W. 1984. Induction of terminal differentiation in human K562 erythroleukemia cells by arabinofuranosylcytosine. The Journal of clinical investigation 74(3): 821‐827.
  231. Krystosek, A. and Sachs, L. 1976. Control of lysozyme induction in the differentiation of myeloid leukemic cells. Cell 9(4 PT 2): 675‐684.
  232. Oelgeschlager, M., Janknecht, R., Krieg, J., Schreek, S., and Luscher, B. 1996. Interaction of the co‐activator CBP with Myb proteins: effects on Myb‐specific transactivation and on the cooperativity with NF‐M. The EMBO journal 15(11): 2771‐2780.
  233. Dror, V. and Winston, F. 2004. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Molecular and cellular biology 24(18): 8227‐8235.
  234. Chadwick, B.P. and Willard, H.F. 2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proceedings of the National Academy of Sciences of the United States of America 101(50): 17450‐17455.
  235. Mowen, K.A., Schurter, B.T., Fathman, J.W., David, M., and Glimcher, L.H. 2004. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Molecular cell 15(4): 559‐571.
  236. Pahlich, S., Zakaryan, R.P., and Gehring, H. 2006. Protein arginine methylation: Cellular functions and methods of analysis. Biochimica et biophysica acta 1764(12): 1890‐ 1903.
  237. Zika, E., Fauquier, L., Vandel, L., and Ting, J.P. 2005. Interplay among coactivator‐associated arginine methyltransferase 1, CBP, and CIITA in IFN‐gamma‐inducible MHC‐II gene expression. Proceedings of the National Academy of Sciences of the United States of America 102(45): 16321‐16326. 9. Anhang 195
  238. Mattei, S., Klein, G., Satre, M., and Aubry, L. 2006. Trafficking and developmental signaling: Alix at the crossroads. European journal of cell biology 85(9‐10): 925‐936.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten