Publikationsserver der Universitätsbibliothek Marburg

Titel:Hochregulation Ca2+ aktivierter K+ Kanäle in humanen T-Lymphozyten bei akuter Nierentransplantatrejektion
Autor:Kämpfe, Doris
Weitere Beteiligte: Hoyer, Joachim (Prof. Dr.)
Veröffentlicht:2009
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0048
DOI: https://doi.org/10.17192/z2010.0048
URN: urn:nbn:de:hebis:04-z2010-00489
DDC: Medizin, Gesundheit
Titel(trans.):Up-regulation of Ca2+ activated potassium channels in humane T-lymphocytes in renal allograft rejection
Publikationsdatum:2010-03-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Kaliumkanäle, Kaliumkanäle, Renal allograft rejection, Potassium channels, Lymphozytenaktivierung, Nierentransplantatabstoßung, Nierentransplantatabstoßung, Lymphocyte activation, Lymphozytenaktivierung

Zusammenfassung:
Die Nierentransplantation ermöglicht terminal niereninsuffizienten Patienten ein Leben unabhängig von der Dialyse. Eine häufige und sowohl klinisch als auch ökonomisch relevante Komplikation der Transplantation stellt jedoch die akute Transplantatrejektion dar, die innerhalb von Wochen bis Monaten nach der Transplantation auftritt und einen entscheidenden Einfluss auf das Langzeitüberleben des Transplantats hat. Die akute Rejektion wird derzeit durch eine nachlassende Nierenfunktion und einen Anstieg des Serumkreatinins und endgültig durch das histopathologische Ergebnis der Biopsie diagnostiziert. Der Großteil der Rejektionen lässt sich erfolgreich mit einer Prednisolon-Bolus-Therapie behandeln. Allerdings erfolgt die Diagnose erst spät im Verlauf der Rejektion, da klinisch einsetzbare frühe Marker fehlen. Erste in vitro Untersuchungen deuten darauf hin, dass neben zahlreichen anderen Faktoren Ca2+-abhängige Kaliumkanäle an der Aktivierung der Lymphozyten beteiligt sind, indem sie über eine modifizierte Expression und Funktion proliferative Vorgänge induzieren und regulieren. In der vorliegenden Arbeit wurden mittels Whole-cell-Patch-Clamp-Methodik die Funktion von K+-Kanälen in T-Lymphozyten gesunder Probanden sowie nierentransplantierter Patienten im postoperativen Verlauf analysiert. Die Untersuchungen wurden präoperativ sowie am Tag 1, 3, 7, 14 und 21 sowie bei bioptisch bestätigter akuter Transplantatrejektion an den Tagen 0, 2, 6 und 12 durchgeführt. Aus den durchgeführten Experimenten ließen sich folgende Hauptbefunde erheben: Im Rahmen der Patch-Clamp-Untersuchungen konnte gezeigt werden, dass in frisch isolierten T-Lymphozyten gesunder Probanden der Kv-Strom die Hauptkomponente des K+-Gesamtstroms darstellt, wobei der Kv anhand seiner charakteristischen elektrophysiologischen und pharmakologischen Eigenschaften identifiziert werden konnte. Bei mit OKT3 in vitro aktivierten Lymphozyten setzt sich der K+-Gesamtstrom aus dem Kv und dem kalziumabhängigen K+-Kanal IKCa zusammen, der ebenfalls anhand seiner charakteristischen elektrophysiologischen und pharmakologischen Eigenschaften identifiziert werden konnte. Bei nierentransplantierten Patienten ohne akute Transplantatrejektion kommt es im postoperativen Verlauf zu einer Zunahme der Kv-Aktivität. Dagegen beobachtet man bei Patienten mit akuter Rejektion eine Zunahme des IKCa-Stroms. Unter Therapie nimmt die Aktivität der IKCa-Kanäle wieder auf die präoperativ erhobenen Werte ab. Dieser Anstieg der IKCa-Funktion zeigte sich bereits am 7. postoperativen Tag. Die Befunde dieser Arbeit deuten darauf hin, dass ein Anstieg des IKCa als Hinweis auf eine akute Rejektion gewertet werden könnte. Ein Anstieg der Kv-Funktion hingegen korreliert mit einer stabilen Transplantatfunktion. Durch Anwendung hochselektiver IKCa-Kanalblocker wie TRAM-34 könnte eventuell die Induktion von IKCa-Expression und -Funktion inhibiert werden und somit die Proliferation und Aktivierung von Lymphozyten mit konsekutiver akuter Transplantatrejektion verhindert werden.

Summary:
Acute rejection is a major prognostic factor for long term renal transplant survival. A reliable, sensitive, and specific early marker for acute rejection is still missing. In the cellular mechanism of the immune response, up-regulation of K+channel functions is an early and crucial step in the activation of T-lymphocytes by promoting membrane potential-driven Ca2+-influx and cell proliferation. In the present study it was tested whether K+ channel function is altered after renal transplantation. Methods: 46 patients were studied longitudinally after renal transplantation for a follow-up period of 21 days. 6 of these patients developed acute renal allograft rejection as determined by histologic analysis of renal biopsies. In addition we includes 5 other patients who were hospitalised within the study period due to an acute renal allograft rejection. Functional expression of the K+ channels in T-lymphocytes from peripheral blood was analysed before transplantation, and on predefined days 1, 3, 7 and 14 up to 21 days after transplantation, and during acute rejection on day 0, 2 and 6 by use of the patch-clamp technique. Results: T-lymphocytes expressed two types of K+-channels with the characteristics of the voltage-gated K+-channel (Kv1.3) and the intermediate-conductance Ca2+-activated K+-channel (IKCa). The Kv1.3 current was found to be the predominat K+-current in T-lymphocyts of healthy individuals as well as in patients with chronic kidney disease before transplantation. The IKCa current component was low. After renal transplantation IKCa functions remained constant in T-lymphocytes from patients without acute renal allograft rejection. In contrast, in T-lymphocytes from patients with acute renal allograft rejection, we observed a significant increase in IKCa -currents. IKCa function returned to the level before rejection after immunosuppressive therapy. Regarding the Kv1.3 current we saw a significant increase in T-lymphocytes from patients without acute renal allograft rejection. In T-lymphocytes from patients with acute allograft rejection the Kv1.3 function remained constant until the day of the rejection. At this point we also observed a significant increase of the Kv1.3 current. Comparing the two groups before transplantation it could be shown that the group without rejection showed a slight but significant upregulation of the IKCa-function. Conclusion: The steep up-regulation of IKCa -currents in T-lymphocytes from patients developing acute renal allograft rejection could serve as a new diagnostic marker. Moreover, blockade of the IKCa by highly selective inhibitors might represent a new pharmacotherpeutical strategy in the prevention of acute renal allograft rejection.

Bibliographie / References

  1. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000 Dec;52(4):557-94. Review
  2. Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation. 108:1119-1125, 2003.
  3. Vella J, Koch M, Brennan D. Acute allograft rejection: Diagnosis. www.uptodateonline.com. Download am 27.11.2006
  4. Mauiyyedi S, Crespo M, Collins AB, Schneeberger EE, Pascual MA, Saidman SL, Tolkoff-Rubin NE, Williams WW, Delmonico FL, Cosimi AB, Colvin RB. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol. 2002 Mar;13(3):779-87.
  5. Acute humoral rejection in renal allograft recipients: I. Incidence, serology and clinical characteristics. Transplantation. 2001 Mar 15;71(5):652-8.
  6. Wulff H, Rauer H, During T, Hanselmann C, Ruff K, Wrisch A, Grissmer S, Hansel W. Alkoxypsoralens, novel nonpeptide blockers of Shaker-type K+ channels: synthesis and photoreactivity. J Med Chem. 1998 Nov 5;41(23):4542-9.
  7. Papazian DM, Timpe LC, Jan YN, Jan LY. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 1991 Jan 24;349(6307):305-10.
  8. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006 May 11;441(7090):179-85.
  9. Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J. A novel gene, hkCa4, encodes the calcium-activated potassium channel in human T-lymphocytes. J Biol Chem. 272: 32723-32726, 1997.
  10. Herrington J, Sanchez M, Wunderler D, Yan L, Bugianesi RM, Dick IE, Clark SA, Brochu RM, Priest BT, Kohler MG, McManus OB. Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J Physiol. 2005 Aug 15;567(Pt 1):159-75. Epub 2005 Jun 2.
  11. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D Jr, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol. 1997 Jun 1;158(11):5120-8.
  12. Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol. 2004 Mar;65(3):630-8.
  13. Reich EP, Cui L, Yang L, Pugliese-Sivo C, Golovko A, Petro M, Vassileva G, Chu I, Nomeir AA, Zhang LK, Liang X, Kozlowski JA, Narula SK, Zavodny PJ, Chou CC. Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur J Immunol. 2005 Apr;35(4):1027-36.
  14. Desai R, Peretz A, Idelson H, Lazarovici P, Attali B. Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization. J Biol Chem. 2000 Dec 22;275(51):39954-63.
  15. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem. 2001 Apr 13;276(15):12249-56. Epub 2001 Jan 22.
  16. Parekh AB. Cell biology: cracking the calcium entry code. Nature. 2006 May 11;441(7090):163-5.
  17. Kamoun M. Cellular and molecular parameters in human renal allograft rejection. Clin Biochem. 2001 Feb;34(1):29-34. Review.
  18. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP. Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J Immunol. 1990 Jun 15;144(12):4841-50.
  19. Koo GC, Blake JT, Shah K, Staruch MJ, Dumont F, Wunderler D, Sanchez M, McManus OB, Sirotina-Meisher A, Fischer P, Boltz RC, Goetz MA, Baker R, Bao J, Kayser F, Rupprecht KM, Parsons WH, Tong XC, Ita IE, Pivnichny J, Vincent S, Cunningham P, Hora D Jr, Feeney W, Kaczorowski G, et al. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol. 1999 Nov 1;197(2):99-107.
  20. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006 May 26;312(5777):1220-3.
  21. Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, Strom TB. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation. 1998 Sep 15;66(5):562-6. Erratum in: Transplantation 1998 Nov 15;66(9):1264.
  22. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353-6.
  23. Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC. hSK4/hIK1, a calmodulin-binding K Ca channel in human T-lymphocytes. Roles in proliferation and volume-regulation. J Biol Chem. 274:14838-14849, 1999.
  24. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch- clamptechniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85-100, 1981.
  25. Wickenden A. K(+) channels as therapeutic drug targets. Pharmacol Ther. 2002
  26. Matteson DR, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature. 1984 Feb 2-8;307(5950):468-71.
  27. Sayegh MH, Watschinger B, Carpenter CB. Mechanisms of T cell recognition of alloantigen. The role of peptides. Transplantation. 1994 May 15;57(9):1295-302. Review.
  28. MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB. Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol. 2001
  29. Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl-secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol. 1996 Nov;271(5 Pt 1):L775-84.
  30. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M. Noninvasive diagnosis of renal- allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001 Mar 29;344(13):947-54.
  31. Van Wauwe JP, De Mey JR, Goossens JG. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol. 1980
  32. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227-34.
  33. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol. 1995;13:623-53. Review.
  34. Wulff H, Beeton C, Chandy KG. Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel. 2003 Sep;6(5):640-7.
  35. Pusch M, Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204-11.
  36. Strom TB. Rejection-more than the eye can see. N Engl J Med. 2005 Dec 1;353(22):2394-6.
  37. Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem. 1998 Dec 4;273(49):32697-707.
  38. Wiland AM, Fink JC, Weir MR, Philosophe B, Blahut S, Weir MR Jr, Copenhaver B, Bartlett ST. Should living-unrelated renal transplant recipients receive antibody induction? Results of a clinical experience trial. Transplantation. 2004 Feb 15;77(3):422-5.
  39. Sauvé R, Chahine M, Tremblay J, Hamet P. Single-channel analysis of the electrical response of bovine aortic endothelial cells to bradykinin stimulation: contribution of a Ca 2+ -dependent K + channel. J Hypertens 8 Suppl:S193-201, 1990.
  40. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260:799-802, 1976.
  41. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005 May 9;169(3):435-45. Epub 2005 May 2.
  42. Jensen BS, Strobaek D, Olesen SP, Christophersen P. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets. 2001 Dec;2(4):401-22. Review.
  43. Grissmer S, Ghanshani S, Dethlefs B, McPherson JD, Wasmuth JJ, Gutman GA, Cahalan MD, Chandy KG. The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells. J Biol Chem. 1992 Oct 15;267(29):20971-9.
  44. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11094-9.
  45. Russell ME, Wallace AF, Wyner LR, Newell JB, Karnovsky MJ. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation. 1995 Aug 1;92(3):457-64.
  46. Peña TL, Chen SH, Konieczny SF Rane SG. Ras/MEK/ERK Up-regulation of the fibroblast K Ca channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-β suppression of myogenesis. J Biol Chem. 275:13677-13682, 2000.
  47. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem. 2000 Nov 24;275(47):37137-49.
  48. Mathie A, Wooltorton JR, Watkins CS. Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents. Gen Pharmacol. 1998 Jan;30(1):13-24. Review.
  49. Seoh SA, Sigg D, Papazian DM, Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996 Jun;16(6):1159-67.
  50. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 268:C799-822, 1995.
  51. Deutsch C, Krause D, Lee SC. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol. 1986 Mar;372:405-23.
  52. Fukushima Y, Hagiwara S, Henkart M. Potassium current in clonal cytotoxic T lymphocytes from the mouse. J Physiol. 1984 Jun;351:645-56.
  53. Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7366-71. Epub 2003 May 28.
  54. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8151-6.
  55. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.J Exp Med. 1993 Mar 1;177(3):637-45.
  56. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci. USA. 94:11651-11656, 1997.
  57. Pietra BA, Wiseman A, Bolwerk A, Rizeq M, Gill RG. CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J Clin Invest. 2000 Oct;106(8):1003-10.
  58. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005 Jul 12;15(13):1235-41.
  59. Neher E, Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712-6.
  60. Schlichter L, Sidell N, Hagiwara S. K channels are expressed early in human T- cell development. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5625-9.
  61. Heidbuchel H, Vereecke J, Carmeliet E. Three different potassium channels in human atrium. Contribution to the basal potassium conductance. Circ Res. 1990 May;66(5):1277-86.
  62. Nilius B, Droogmanns G. Ion channels and their functional role in vascular endothelium. Physiolog Rev. 8(4):1415-1459, 2001.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten