Publikationsserver der Universitätsbibliothek Marburg

Titel:The Myxococcus xanthus Red two-component signal transduction system: a novel “four component” signaling mechanism
Autor:Jagadeesan, Sakthimala
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof.)
Veröffentlicht:2008
URI:https://archiv.ub.uni-marburg.de/diss/z2009/0099
URN: urn:nbn:de:hebis:04-z2009-00999
DOI: https://doi.org/10.17192/z2009.0099
DDC: Biowissenschaften, Biologie
Titel(trans.):Das Myxococcus xanthus Red Zwei-Komponenten-Signal Transduktionssystem: Ein neuartiger "four component" Signal-Mechanismus
Publikationsdatum:2009-03-25
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Myxococcus xanthus, Myxococcus xanthus, Two-component system

Summary:
Zweikomponentensysteme werden als Signalverarbeitungsmodule in Bakterien oft verwendet, um Veränderungen in der Umwelt zu detektieren und angemessen darauf zu reagieren. Im komplexen, durch Nährstoffmangel induzierten Entwicklungszyklus von Myxococcus xanthus spielen Zweikomponentensysteme eine wichtige Rolle. Hierbei sammeln sich die beweglichen Zellen zunächst an einem Ort an, differenzieren innerhalb dieser Ansammlungen zu Sporen und bilden vielzellige Strukturen, die Fruchtkörper genannt werden. Es ist bekannt, dass die Proteine RedC, RedD, RedE und RedF den Entwicklungszyklus beeinflussen, und man nimmt an, dass diese Proteine ein ungewöhnliches Zweikomponentensystem bilden, das aus zwei Histidin-Kinase-homologen Komponenten (RedC und RedE) und zwei Regulator-homologen Komponenten (RedD und RedF) besteht (Higgs et al., 2005). Um den Signalfluss in diesem ungewöhnlichen Zweikomponentensystem zu entschlüsseln, wurden genetische und biochemische Methoden angewandt. Die Analyse von in-frame-Deletionsmutanten und nicht-funktionaler Punktmutanten für jedes einzelne Gen ergab, dass phosphoryliertes RedF und die Histidin- Kinase-Aktivität von RedC notwendig sind, um den Entwicklungszyklus zu blockieren, während RedE und RedD erforderlich sind, um den Fortgang des Entwicklungsprogramms zu induzieren. Genetische Epistase-Experimente ergaben, dass RedE spezifisch der Funktion von RedF entgegenwirkt und dass RedD im Entwicklungsprogramm RedE vorgeschaltet ist. Biochemische Analysen zeigen, dass RedC leicht autophosphoryliert und die Phosphorylgruppe auf RedD übertragen werden kann. Interessanterweise scheint RedE keine Autophosphorylierungsaktivität zu besitzen, sondern von RedD phosphoryliert zu werden. Darüber hinaus wirkt RedE auch als Phosphatase von RedF. Zusammengenommen ergeben die vorliegenden Daten ein Modell für ein kompliziertes Signalübertragungssystem, in dem RedC wahrscheinlich als Kinase von RedF wirkt und dadurch den Entwicklungszyklus blockiert. Die Repression wird aufgehoben, wenn RedC, als Antwort auf ein noch nichtidentifiziertes Signal, RedD phosphoryliert, das dann die Phosphorylgruppe weiter auf RedE überträgt. Die Phosphorylierung von RedE ermöglicht es RedE, RedF zu dephsphorylieren. Die vorliegende Arbeit beschreibt somit ein neuartiges „Vierkomponenten“-Signaltransduktionsmodell innerhalb der Zweikomponenten-Signaltransduktionsfamilie.

Zusammenfassung:
Two-component systems are widely used by bacteria as signaling modules to sense, response and adapt to environmental changes. In Myxococcus xanthus, two-component systems play an essential role during the complex starvation induced developmental program. During development, cells first migrate into mounds and then, within these mounds differentiate into spores, forming multicellular structures termed fruiting bodies. It has been previously demonstrated that progression through the developmental program is modulated by the RedCDEF proteins which are postulated to form an unusual two-component signal transduction system consisting of two histidine kinase homologs (RedC and RedE) and two response regulator homologs (RedD and RedF) (Higgs et al, 2005). To determine how the signals flow between these unusual two-component signaling proteins, both genetic and biochemical approaches were employed. Analysis of in-frame deletion and non-functional point mutants in each gene determined that RedF in its phosphorylated state and the histidine kinase activity of RedC are necessary to repress progression through the developmental program, while RedE and RedD are necessary to induce developmental progression. Genetic epistasis experiments indicated that RedE specifically antagonizes function of RedF, and RedD acts upstream to RedE. Our biochemical analyses demonstrate that RedC readily autophosphorylates and the phosphoryl group can be transferred to the RedD. Interestingly, RedE does not appear to autophosphorylate, but instead receives a phosphoryl group from RedD. Furthermore, RedE also acts as phosphatase on RedF. Taken together, these data suggest a model for a sophisticated signaling system in which RedC is likely to act as kinase on RedF to repress developmental progression. Developmental repression is relieved when RedC is induced, by an unknown mechanism, to transfer its phosphoryl group to RedD, which then passes the phosphoryl group to RedE. The phosphorylation of RedE allows RedE to de-phosphorylate RedF. Thus, this work defines a novel “four component” signal transduction mechanism within the two-component signal transduction family.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten