Confidence sets for change-point problems in nonparametric regression

In this thesis, confidence sets for different nonparametric regression problems with change-points are developed. Uniform and pointwise asymptotic confidence bands for the jump-location-curve in a boundary fragment model using methods from M-estimation and Gaussian approximation are constructed for...

Whakaahuatanga katoa

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Kaituhi matua: Bengs,Viktor
Ētahi atu kaituhi: Holzmann, Hajo (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Hōputu: Dissertation
Reo:Ingarihi
I whakaputaina: Philipps-Universität Marburg 2018
Ngā marau:
Urunga tuihono:Kuputuhi katoa PDF
Tags: Tāpirihia he Tūtohu
Keine Tags, Fügen Sie den ersten Tag hinzu!
Whakaahuatanga
Whakarāpopototanga:In this thesis, confidence sets for different nonparametric regression problems with change-points are developed. Uniform and pointwise asymptotic confidence bands for the jump-location-curve in a boundary fragment model using methods from M-estimation and Gaussian approximation are constructed for the rotated difference kernel estimator. In addition, estimation of the location and of the height of the jump in some derivative of a regression curve is considered. Optimal convergence rates as well as the joint asymptotic normal distribution of estimators based on the zero-crossing-time technique are established over certain Hölder-classes. Further, joint as well as marginal asymptotic confidence sets which are honest and adaptive for these parameters over specific Hölder-classes are constructed. The finite-sample performance is investigated in simulation studies, and real data illustrations are given.
Whakaahuatanga ōkiko:171 Seiten
DOI:10.17192/z2018.0511