On the equivariant cohomology of isotropy actions
Let G be a compact connected Lie group and K \subseteq G a closed subgroup. We show that the isotropy action of K on G/K is equivariantly formal and that the space G/K is formal in the sense of rational homotopy theory whenever K is the identity component of the intersection of the fixed point sets of two distinct involutions on G, so that G/K is a \mathbb{Z}_2\times\mathbb{Z}_2--symmetric space. If K is the identity component of the fixed point set of a single involution and H \subseteq G is a closed connected subgroup containing K, then we show that the action of K on G/H by left-multiplication is equivariantly formal. The latter statement follows from the well-known special case K = H, but is proved by different means, namely by providing an algebraic model for the equivariant cohomology of certain actions.
Philipps-Universität Marburg
2018-10-22
Marburg
Universitätsbibliothek Marburg
UB Marburg
http://archiv.ub.uni-marburg.de/diss/z2018/0496
https://doi.org/10.17192/z2018.0496
urn:nbn:de:hebis:04-z2018-04969
On the equivariant cohomology of isotropy actions
en
Hagh Shenas Noshari, Sam
Universitätsbibliothek Marburg
mailto:auskunft@ub.uni-marburg.de
https://archiv.ub.uni-marburg.de/adm/img/unilogo-dfg.gif
http://www.uni-marburg.de/bis
http://archiv.ub.uni-marburg.de/diss/z2018/0496