On the equivariant cohomology of isotropy actions

Let G be a compact connected Lie group and K \subseteq G a closed subgroup. We show that the isotropy action of K on G/K is equivariantly formal and that the space G/K is formal in the sense of rational homotopy theory whenever K is the identity component of the intersection of the fixed point sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hagh Shenas Noshari, Sam
Beteiligte: Goertsches, Oliver (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2018
Reine und Angewandte Mathematik
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a compact connected Lie group and K \subseteq G a closed subgroup. We show that the isotropy action of K on G/K is equivariantly formal and that the space G/K is formal in the sense of rational homotopy theory whenever K is the identity component of the intersection of the fixed point sets of two distinct involutions on G, so that G/K is a \mathbb{Z}_2\times\mathbb{Z}_2--symmetric space. If K is the identity component of the fixed point set of a single involution and H \subseteq G is a closed connected subgroup containing K, then we show that the action of K on G/H by left-multiplication is equivariantly formal. The latter statement follows from the well-known special case K = H, but is proved by different means, namely by providing an algebraic model for the equivariant cohomology of certain actions.
Umfang:68 pages.
DOI:https://doi.org/10.17192/z2018.0496