GNA as a scaffold for chromophores aggregates and design of silicon-based DNA binders

My work mainly includes two parts, one is GNA as a scaffold for molecular aggregates of chromophores, and the other one is the design of octahedral silicon complexes as DNA binders. In the first part of the thesis, simplified glycol nucleic acid (GNA) was used as the template for the helical assem...

Full description

Saved in:
Bibliographic Details
Main Author: Xiang, Yonggang
Contributors: Zhang, Lilu (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Language:English
Published: Philipps-Universität Marburg 2013
Chemie
Subjects:
GNA
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:My work mainly includes two parts, one is GNA as a scaffold for molecular aggregates of chromophores, and the other one is the design of octahedral silicon complexes as DNA binders. In the first part of the thesis, simplified glycol nucleic acid (GNA) was used as the template for the helical assembly of covalently bound homochromophores and heterochromophores: perylene bisimide (B), phthalocyanine (Y), and porphyrin (P), and different numbers of chromophores could be stacking inside a duplex which led to functional artificial double-helical structures. In the second part of the thesis, the first examples of biologically active complexes based on octahedral silicon were designed, and silicon complexes with simple arenediol ligands and phenazinediol ligands were successfully synthesized. These kinds of siliconcomplexes could be used to intercalate with DNA duplexes, detect mismatched DNA base pairs, and stabilize the formation of the G- quadruplex.
DOI:https://doi.org/10.17192/z2013.0233