Publikationsserver der Universitätsbibliothek Marburg

Titel:Targeted optimization of chromatographic columns based on 3D analysis of packing microstructure
Autor:Reising, Arved Ernst
Weitere Beteiligte: Tallarek, Ulrich (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0711
URN: urn:nbn:de:hebis:04-z2017-07115
DOI: https://doi.org/10.17192/z2017.0711
DDC: Chemie
Titel (trans.):Gezielte Optimierung chromatographischer Säulen auf der Basis von 3D-Analyse ihrer Packungsmikrostruktur
Publikationsdatum:2017-11-14
Lizenz:https://creativecommons.org/licenses/by-sa/4.0

Dokument

Schlagwörter:
structure analysis, CLSM, HPLC, HPLC, FIB-SEM, reconstruction, FIB-SEM, Konfokale Mikroskopie, Rekonstruktion, Strukturanalyse

Summary:
The preparation, structure, and performance of functional materials porous are strongly interrelated. Hence, a detailed analysis of the pore structure of a functional porous material in combination with a detailed characterisation of its performance can provide an understanding of the influence of individual parameters during preparation and thus identify structural limitations to an improved utilization. The obtained results can be used to tune the preparation towards a better pore structure suited for the targeted application. This work focuses on packings of silica-based particles for highly efficient chromatographic separations. The prepared packings combine an interparticle macropore space for fast flow-based transport with an intraparticle mesopore space providing high surface areas for molecule-surface interactions. Such packed columns have a wide field of application, not only in highly efficient separations, but also for catalysis, and (energy) storage However, the focus here is on separations in liquid chromatography. In Chapter 1, the influence of the slurry concentration on separation efficiency and bed structure was investigated for capillary columns (75 µm inner diameter, 30 cm length) packed with 1.3 µm bridged-ethyl hybrid (BEH) fully porous silica particles. The slurry concentration was varied from 5 to 50 mg/mL while every other packing parameter was kept constant. Chromatographic characterisation with hydroquinone as weakly retained analyte revealed highly efficient separations (reduced plate heights as low as 1.5) at an optimal intermediate slurry concentration of 20 mg/mL for this specific set of packing parameters. Confocal laser scanning microscopy (CLSM) was utilized to conduct a three-dimensional reconstruction and to carry out a detailed morphological analysis of the column with the best performance, a column packed with a slurry concentration below the optimum, and one packed above the optimum. Two counteracting effects were revealed: Radial heterogeneities limit the separation efficiency for columns packed at low slurry concentrations. With an increase in slurry concentration, these radial effects get supressed but the number and size of large voids with a diameter similar to the mean particle diameter increase significantly. Interestingly, the reconstructions also revealed high external bed porosities between 0.47 and 0.50 which are higher than expected with respect to the random loose packing limit reported for frictional, cohesionless particles. However, no signs of bed instability could be observed demonstrating the significant impact of interparticle forces for particles as small as 1.3 µm. In Chapter 2, the investigation of the optimal slurry concentration was expanded by analysing the effects for a different particle size to obtain a more general picture. A similar set of capillary columns (75 µm inner diameter, 45 cm length) was packed with 1.9 µm BEH particles at eleven different slurry concentrations between 5 and 200 mg/mL including additional tests for reproducibility at selected concentrations and the observation of bed formation using optical microscopy. While comparable reduced plate heights were achieved, the observed optimum of 140-160 mg/mL to pack highly efficient columns reproducibly differed significantly from the 20 mg/mL for the 1.3 µm particles identified in Chapter 1. This can be explained by the difference in the particle diameter as interparticle forces and particle aggregation become more dominant at still smaller diameters. CLSM-based reconstructions revealed similar trends in the bed structures as seen in Chapter 1. At low concentrations, pronounced ordered particle layers in the direct vicinity of the column wall, local bed densification near the column wall, and particle size-segregation limit the achieved separation efficiency. The peculiarity of the first effect is continuously decreasing with an increase in the slurry concentration even beyond the optimum while the latter two effects are already supressed at the optimal slurry concentration. On the other hand, the number and size of large voids increase with an increase in the utilized slurry concentration as already seen in Chapter 1. The videos acquired during column packing provided very helpful insights into bed formation mechanisms and thus delivered possible explanations for these structural features. At 10 mg/mL, particles arrive individually at the bed front allowing individual settlement and rearrangement on the arrival of following particles what allows a discrimination of particles according to their individual properties. The picture looks completely different for 100 mg/mL as example for higher concentrated slurries. Here, particles tend to aggregate during packing and arrive in large batches. This prevents discrimination of individual particles but significantly reduces the chances for rearrangement and is thus prone to the conservation of defects formed between the border of the arriving batches of particles and the front of the bed. Chapter 3 is based on the results obtained during the work presented in Chapters 1 and 2. The combination of high slurry concentration and ultrasound was already proposed there as chance to keep transcolumn heterogeneities as low as possible while preventing the formation of large voids. To test this hypothesis, two sets, each consisting of three capillary columns (75 µm inner diameter, 100 cm length) were packed with 1.9 µm BEH particles at a slurry concentration of 200 mg/mL; one set under application of ultrasound during packing, the other one without. All three columns, which underwent sonication, showed significantly better performance than each of the other columns. The obtained reduced minimum plate height for a weakly retained analyte was even lower than the already impressive value of 1.5 for columns packed at a slurry concentration optimal for packing without sonication and reached values close to unity over a length of 1 m for the best-performing column. The achieved theoretical plate counts of ~500,000 demonstrate a unique potential for highly efficient separations of extremely complex samples. In Chapter 4, the focus is shifted from capillary columns to the more common analytical format. CLSM could not be applied here as the steel columns are not transparent and extrusion of the bed is not possible without losing either stability or optical transparency. Thus, an imaging and reconstruction procedure based on focused ion beam scanning electron microscopy was developed using a commercial narrow-bore analytical column (2.1 mm inner diameter, 50 mm length) packed with 1.7 µm BEH particles. The packing was embedded with poly(divinylbenzene) prior to extrusion from the steel column in order to conserve the bed structure. Two image stacks were acquired and reconstructed at characteristic positions within the bed: one in the central section of the column along the flow direction to obtain the bulk properties of the bed and one from the column wall towards the column centre to investigate and quantify the influence of the geometrical wall effect and the second wall effect. To investigate the effect of the microstructure in the wall region on local flow through the bed, a radially resolved flow profile was obtained by lattice-Boltzmann simulations. For this column, the region affected by wall effects spanned over approximately 62 particle diameters showing a decrease in the local mean porosity by up to 10% and an increase in the local mean particle diameter by up to 3% with respect to the bulk region inducing a decrease of the local flow velocity by up to 23%. Furthermore, four more ordered layers of particles were formed directly at the hard column wall due to the geometrical wall effect leading to local velocity fluctuations by up to a factor of three. These quantified structural features are in excellent agreement with previous reports about macroscopic characterisations of the wall effects by optical or chromatographic measurements.

Bibliographie / References

  1. J.M. Godinho, A.E. Reising, U. Tallarek, J.W. Jorgenson, Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns, J. Chromatogr. A 1462 (2016) 165-169. doi:10.1016/j.chroma.2016.08.002.
  2. A.E. Reising, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns, J. Chromatogr. A 1504 (2017) 71-82. doi:10.1016/j.chroma.2017.05.007.
  3. A.E. Reising, S. Schlabach, V. Baranau, D. Stoeckel, U. Tallarek, Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy, J. Chromatogr. A 1513 (2017) 172-182. doi:10.1016/j.chroma.2017.07.049.
  4. M. von der Lehr, K. Hormann, A. Höltzel, L.S. White, A.E. Reising, M.F. Bertino, B.M. Smarsly, U. Tallarek, Mesopore etching under supercritical conditions -A shortcut to hierarchically porous silica monoliths, Microporous Mesoporous Mater. 243 (2017) 247-253. doi:10.1016/j.micromeso.2017.02.036.
  5. L.E. Blue, J.W. Jorgenson, 1.1 µm superficially porous particles for liquid chromatography. Part II: Column packing and chromatographic performance, J. Chromatogr. A 1380 (2015) 71-80.
  6. L.E. Blue, J.W. Jorgenson, 1.1 μm superficially porous particles for liquid chromatography. Part II: Column packing and chromatographic performance, J. Chromatogr. A 1380 (2015) 71-80.
  7. L.E. Blue, J.W. Jorgenson, 1.1 μm superficially porous particles for liquid chromatography. Part II: Column packing and chromatographic performance, J. Chromatogr. A 1380 (2015) 71-80.
  8. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, J.P. Simmons, 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM, Scr. Mater. 55 (2006) 23-28.
  9. F. Gritti, G. Guiochon, Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column, J. Chromatogr. A 1327 (2014) 49-56.
  10. F. Gritti, G. Guiochon, Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column, J. Chromatogr. A 1327 (2014) 49-56.
  11. M. Camenzuli, H.J. Ritchie, J.R. Ladine, R.A. Shalliker, Active flow management in preparative chromatographic separations: A preliminary investigation into enhanced separation using a curtain flow inlet fitting and segmented flow outlet fitting, J. Sep. Sci.
  12. W. Liu, S. Li, A. Baule, H.A. Makse, Adhesive loose packings of small dry particles, Soft Matter (2015) 6492-6498.
  13. G. Van Tendeloo, S. Bals, S. Van Aert, J. Verbeeck, D. Van Dyck, Advanced electron microscopy for advanced materials, Adv. Mater. 24 (2012) 5655-5675.
  14. F. Xie, R.D. Smith, Y. Shen, Advanced proteomic liquid chromatography, J. Chromatogr. A 1261 (2012) 78-90.
  15. F. Capriotti, I. Leonardis, A. Cappiello, G. Famiglini, P. Palma, A fast and effective method for packing nano-lc columns with solid-core nano particles based on the synergic effect of temperature, slurry composition, sonication and pressure, Chromatographia 76 (2013) 1079-1086.
  16. F. Capriotti, I. Leonardis, A. Cappiello, G. Famiglini, P. Palma, A fast and effective method for packing nano-LC columns with solid-core nano particles based on the synergic effect of temperature, slurry composition, sonication and pressure, Chromatographia 76 (2013) 1079-1086.
  17. F. Capriotti, I. Leonardis, A. Cappiello, G. Famiglini, P. Palma, A fast and effective method for packing nano-LC columns with solid-core nano particles based on the synergic effect of temperature, slurry composition, sonication and pressure, Chromatographia 76 (2013) 1079-1086.
  18. K. Hormann, U. Tallarek, Analytical silica monoliths with submicron macropores: Current limitations to a direct morphology-column efficiency scaling, J. Chromatogr. A 1312 (2013) 26-36.
  19. K. Hormann, U. Tallarek, Analytical silica monoliths with submicron macropores: Current limitations to a direct morphology-column efficiency scaling, J. Chromatogr. A 1312 (2013) 26-36.
  20. A.J.P. Martin, R.L.M. Synge, A new form of chromatogram employing two liquid phases, Biochem. J. 35 (1941) 1358-1368.
  21. J. Rybka, A. Höltzel, S.M. Melnikov, A. Seidel-Morgenstern, U. Tallarek, A new view on surface diffusion from molecular dynamics simulations of solute mobility at chromatographic interfaces, Fluid Phase Equilib. 407 (2016) 177-187.
  22. E. Hamdan, J.F. Milthorpe, J.C.S. Lai, An extended macroscopic model for solute dispersion in confined porous media, Chem. Eng. J. 137 (2008) 614-635.
  23. E. Hamdan, J.F. Milthorpe, J.C.S. Lai, An extended macroscopic model for solute dispersion in confined porous media, Chem. Eng. J. 137 (2008) 614-635.
  24. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods 9 (2012) 676- 682.
  25. C. Song, P. Wang, H.A. Makse, A phase diagram for jammed matter, Nature 453 (2008) 629-632.
  26. C. Song, P. Wang, H.A. Makse, A phase diagram for jammed matter, Nature 453 (2008) 629-632.
  27. V.G.M. Sivel, J. Van Den Brand, W.R. Wang, H. Mohdadi, F.D. Tichelaar, P.F.A. Alkemade, et al., Application of the dual-beam FIB/SEM to metals research, J. Microsc. 214 (2004) 237-245.
  28. C.M. Carlevaro, L.A. Pugnaloni, Arches and contact forces in a granular pile, Eur. Phys. J. E 35 (2012) 44.
  29. J.J. DeStefano, B.E. Boyes, S.A. Schuster, W.L. Miles, J.J. Kirkland, Are sub-2 µm particles best for separating small molecules? An alternative, J. Chromatogr. A 1368 (2014) 163-172.
  30. J.J. DeStefano, B.E. Boyes, S.A. Schuster, W.L. Miles, J.J. Kirkland, Are sub-2 µm particles best for separating small molecules? An alternative, J. Chromatogr. A 1368 (2014) 163-172.
  31. Z.P. Zhang, L.F. Liu, Y.D. Yuan, A.B. Yu, A simulation study of the effects of dynamic variables on the packing of spheres, Powder Technol. 116 (2001) 23-32.
  32. Z.P. Zhang, L.F. Liu, Y.D. Yuan, A.B. Yu, A simulation study of the effects of dynamic variables on the packing of spheres, Powder Technol. 116 (2001) 23-32.
  33. P.D.A. Angus, C.W. Demarest, T. Catalano, J.F. Stobaugh, Aspects of column fabrication for packed capillary electrochromatography, J. Chromatogr. A 887 (2000) 347-365.
  34. P.D.A. Angus, C.W. Demarest, T. Catalano, J.F. Stobaugh, Aspects of column fabrication for packed capillary electrochromatography, J. Chromatogr. A 887 (2000) 347-365.
  35. T. Müllner, A. Zankel, Y. Lv, F. Svec, A. Höltzel, U. Tallarek, Assessing structural correlations and heterogeneity length scales in functional porous polymers from physical reconstructions, Adv. Mater. 27 (2015) 6009-6013.
  36. Y. Shen, R. Zhang, R.J. Moore, J. Kim, T.O. Metz, K.K. Hixson, et al., Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics, Anal. Chem. 77 (2005) 3090-3100.
  37. R.A. Shalliker, B.S. Broyles, G. Guiochon, Axial and radial diffusion coefficients in a liquid chromatography column and bed heterogeneity, J. Chromatogr. A 994 (2003) 1- 12.
  38. J.C. Park, K. Raghavan, S.J. Gibbs, Axial development and radial non-uniformity of flow in packed columns, J. Chromatogr. A 945 (2002) 65-81.
  39. A.E. Reising, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns, J. Chromatogr. A 1504 (2017) 71-82.
  40. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung., Arch. F. Mikrosk. Anat. 9 (1873) 413-468.
  41. T.A. Klar, E. Engel, S.W. Hell, Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64 (2001) 66613.
  42. C. Lozano, G. Lumay, I. Zuriguel, R.C. Hidalgo, A. Garcimartín, Breaking arches with vibrations: The role of defects, Phys. Rev. Lett. 109 (2012) 068001.
  43. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19 (1994) 780-782.
  44. T.J. Kaiser, J.W. Thompson, J.S. Mellors, J.W. Jorgenson, Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography, Anal. Chem. 81 (2009) 2860-2868.
  45. T.J. Kaiser, J.W. Thompson, J.S. Mellors, J.W. Jorgenson, Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography, Anal. Chem. 81 (2009) 2860-2868.
  46. T.J. Kaiser, J.W. Thompson, J.S. Mellors, J.W. Jorgenson, Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography, Anal. Chem. 81 (2009) 2860-2868.
  47. J.W. Jorgenson, Capillary liquid chromatography at ultrahigh pressures, Annu. Rev. Anal. Chem. 3 (2010) 129-150.
  48. J.W. Jorgenson, Capillary liquid chromatography at ultrahigh pressures, Annu. Rev. Anal. Chem. 3 (2010) 129-150.
  49. J.W. Jorgenson, Capillary liquid chromatography at ultrahigh pressures, Annu. Rev. Anal. Chem. 3 (2010) 129-150.
  50. J.W. Jorgenson, Capillary liquid chromatography at ultrahigh pressures, Annu. Rev. Anal. Chem. 3 (2010) 129-150.
  51. K.D. Wyndham, J.E. O'Gara, T.H. Walter, K.H. Glose, N.L. Lawrence, B.A. Alden, et al., Characterization and evaluation of C18 HPLC stationary phases based on ethyl- bridged hybrid organic/inorganic particles, Anal. Chem. 75 (2003) 6781-6788.
  52. T. Müllner, K.K. Unger, U. Tallarek, Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors, New J. Chem. 40 (2016) 3993-4015.
  53. T. Müllner, K.K. Unger, U. Tallarek, Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors, New J. Chem. (2016) 3993-4015.
  54. T. Müllner, K.K. Unger, U. Tallarek, Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors, New J. Chem. (2016) 3993-4015.
  55. S. Khirevich, I. Ginzburg, U. Tallarek, Coarse-and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings, J. Comput. Phys. 281 (2015) 708-742.
  56. M.F. Wahab, C.A. Pohl, C.A. Lucy, Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography, J. Chromatogr. A 1270 (2012) 139-146.
  57. M.F. Wahab, C.A. Pohl, C.A. Lucy, Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography, J. Chromatogr. A 1270 (2012) 139-146.
  58. M.F. Wahab, C.A. Pohl, C.A. Lucy, Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography, J. Chromatogr. A 1270 (2012) 139-146.
  59. M.F. Wahab, C.A. Pohl, C.A. Lucy, Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography, J. Chromatogr. A 1270 (2012) 139-146.
  60. J.P.C. Vissers, H.A. Claessens, J. Laven, C.A. Cramers, Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography, Anal. Chem. 67 (1995) 2103-2109.
  61. J.P.C. Vissers, H.A. Claessens, J. Laven, C.A. Cramers, Colloid Chemical Aspects of Slurry Packing Techniques in Microcolumn Liquid Chromatography, Anal. Chem. 67 (1995) 2103-2109.
  62. J.P.C. Vissers, H.A. Claessens, J. Laven, C.A. Cramers, Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography, Anal. Chem. 67 (1995) 2103-2109.
  63. J.P.C. Vissers, H.A. Claessens, J. Laven, C.A. Cramers, Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography, Anal. Chem. 67 (1995) 2103-2109.
  64. T. Farkas, J.Q. Chambers, G. Guiochon, Column efficiency and radial homogeneity in liquid chromatography, J. Chromatogr. A 679 (1994) 231-245.
  65. T. Farkas, J.Q. Chambers, G. Guiochon, Column efficiency and radial homogeneity in liquid chromatography, J. Chromatogr. A 679 (1994) 231-245.
  66. T. Farkas, M.J. Sepaniak, G. Guiochon, Column radial homogeneity in high- performance liquid chromatography, J. Chromatogr. A 740 (1996) 169-181.
  67. S. Fanali, G. D'Orazio, T. Farkas, B. Chankvetadze, Comparative performance of capillary columns made with totally porous and core-shell particles coated with a polysaccharide-based chiral selector in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A 1269 (2012) 136-142.
  68. S. Fanali, G. D'Orazio, T. Farkas, B. Chankvetadze, Comparative performance of capillary columns made with totally porous and core-shell particles coated with a polysaccharide-based chiral selector in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A 1269 (2012) 136-142.
  69. F. Gritti, G. Guiochon, Comparative study of the performance of columns packed with several new fine silica particles. Would the external roughness of the particles affect column properties? J. Chromatogr. A 1166 (2007) 30-46.
  70. C.H. Eon, Comparison of broadening patterns in regular and radially compressed large- diameter columns, J. Chromatogr. A 149 (1978) 29-42.
  71. S. Roulin, R. Dmoch, R. Carney, K.D. Bartle, P. Myers, M.R. Euerby, C. Johnson, Comparison of different packing methods for capillary electrochromatography columns, J. Chromatogr. A 887 (2000) 307-312.
  72. M. Franc, J. Sobotníková, P. Coufal, Z. Bosáková, Comparison of different types of outlet frits in slurry-packed capillary columns, J. Sep. Sci. 37 (2014) 2278-2283.
  73. D. Hlushkou, K. Hormann, A. Höltzel, S. Khirevich, A. Seidel-Morgenstern, U. Tallarek, Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region, J. Chromatogr. A 1303 (2013) 28-38.
  74. D. Hlushkou, K. Hormann, A. Höltzel, S. Khirevich, A. Seidel-Morgenstern, U. Tallarek, Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region, J. Chromatogr. A 1303 (2013) 28-38.
  75. D. Hlushkou, K. Hormann, A. Höltzel, S. Khirevich, A. Seidel-Morgenstern, U. Tallarek, Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region, J. Chromatogr. A 1303 (2013) 28-38.
  76. F. Gritti, G. Guiochon, Comparison of heat friction effects in narrow-bore columns packed with core-shell and totally porous particles, Chem. Eng. Sci. 65 (2010) 6310- 6319.
  77. R.Y. Yang, R.P. Zou, A.B. Yu, Computer simulation of the packing of fine particles, Phys. Rev. E 62 (2000) 3900-3908.
  78. R.Y. Yang, R.P. Zou, A.B. Yu, Computer simulation of the packing of fine particles, Phys. Rev. E 62 (2000) 3900-3908.
  79. S. Bruns, T. Müllner, M. Kollmann, J. Schachtner, A. Höltzel, U. Tallarek, Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology, Anal. Chem. 82 (2010) 6569-6575.
  80. S. Bruns, T. Müllner, M. Kollmann, J. Schachtner, A. Höltzel, U. Tallarek, Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology, Anal. Chem. 82 (2010) 6569-6575.
  81. S. Bruns, T. Müllner, M. Kollmann, J. Schachtner, A. Höltzel, U. Tallarek, Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology, Anal. Chem. 82 (2010) 6569-6575.
  82. G. Guiochon, T. Farkas, H. Guan-Sajonz, J.-H. Koh, M. Sarker, B.J. Stanley, et al., Consolidation of particle beds and packing of chromatographic columns, J. Chromatogr. A 762 (1997) 83-88.
  83. G. Guiochon, T. Farkas, H. Guan-Sajonz, J.-H. Koh, M. Sarker, B.J. Stanley, et al., Consolidation of particle beds and packing of chromatographic columns, J. Chromatogr. A 762 (1997) 83-88.
  84. T. Farkas, G. Guiochon, Contribution of the radial distribution of the flow velocity to band broadening in HPLC columns, Anal. Chem. 69 (1997) 4592-4600.
  85. T. Farkas, G. Guiochon, Contribution of the radial distribution of the flow velocity to band broadening in HPLC columns, Anal. Chem. 69 (1997) 4592-4600.
  86. P. Aggarwal, V. Asthana, J.S. Lawson, H.D. Tolley, D.R. Wheeler, B.A. Mazzeo, M.L. Lee, Correlation of chromatographic performance with morphological features of organic polymer monoliths. J. Chromatogr. A 1334 (2014) 20-29.
  87. T.J. Causon, I. Nischang, Critical differences in chromatographic properties of silica- and polymer-based monoliths, J. Chromatogr. A 1358 (2014) 165-171.
  88. G. Mallol, J.L. Amorós, M.J. Orts, D. Llorens, Densification of monomodal quartz particle beds by tapping, Chem. Eng. Sci. 63 (2008) 5447-5456.
  89. K.M. Grinias, J.M. Godinho, E.G. Franklin, J.T. Stobaugh, J.W. Jorgenson, Development of a 45 kpsi ultrahigh pressure liquid chromatography instrument for gradient separations of peptides using long microcapillary columns and sub-2 µm particles, J. Chromatogr. A 1469 (2016) 60-67.
  90. S. Bruns, Dreidimensionale Rekonstruktion monolithischer Festphasen mittels konfokaler Lasermikroskopie, Dissertation (2009), Philipps-Universität Marburg, Germany.
  91. R. Krueger, Dual-column (FIB-SEM) wafer applications, Micron 30 (1999) 221-226.
  92. D. Vidal, C. Ridgway, G. Pianet, J. Schoelkopf, R. Roy, F. Bertrand, Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice- Boltzmann simulations, Comput. Chem. Eng. 33 (2009) 256-266.
  93. Z. Saghi, P.A. Midgley, Electron tomography in the (S)TEM: From nanoscale morphological analysis to 3D atomic imaging, Annu. Rev. Mater. Res. 42 (2012) 59- 79.
  94. Z. Saghi, P.A. Midgley, Electron tomography in the (S)TEM: from nanoscale morphological analysis to 3D atomic imaging, Annu. Rev. Mater. Res. 42 (2012) 59-79.
  95. R.A. Shalliker, B.S. Broyles, G. Guiochon, Evaluation of the secondary consolidation of columns for liquid chromatography by ultrasonic irradiation, J. Chromatogr. A 878 (2000) 153-163.
  96. R.A. Shalliker, B.S. Broyles, G. Guiochon, Evaluation of the secondary consolidation of columns for liquid chromatography by ultrasonic irradiation, J. Chromatogr. A 878 (2000) 153-163.
  97. G. Guiochon, E. Drumm, D. Cherrak, Evidence of a wall friction effect in the consolidation of beds of packing materials in chromatographic columns, J. Chromatogr. A 835 (1999) 41-58.
  98. C.X. Li, X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Experimental study on the packing of uniform spheres under three-dimensional vibration, Powder Technol. 208 (2011) 617- 622.
  99. O. Ersen, I. Florea, C. Hirlimann, C. Pham-Huu, Exploring nanomaterials with 3D electron microscopy, Mater. Today 18 (2015) 395-408.
  100. O. Ersen, I. Florea, C. Hirlimann, C. Pham-Huu, Exploring nanomaterials with 3D electron microscopy, Mater. Today 18 (2015) 395-408.
  101. P. Koivisto, R. Danielsson, K.E. Markides, Factors affecting the preparation of packed capillary columns in supercritical carbon dioxide media, J. Microcolumn Sep. 9 (1997) 97-103.
  102. C.G. Horvath, B.A. Preiss, S.R. Lipsky, Fast liquid chromatography: an investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers, Anal. Chem. 39 (1967) 1422-1428.
  103. M.C. Jenkins, M.D. Haw, G.C. Barker, W.C.K. Poon, S.U. Egelhaaf, Finding bridges in packings of colloidal spheres, Soft Matter 7 (2011) 684-690.
  104. T. Müllner, A. Zankel, F. Svec, U. Tallarek, Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers, Mater. Today. 17 (2014) 404-411.
  105. T. Qian, J. Li, Y. Deng, Flower-like hollow porous silica sphere for high-temperature thermal storage, Appl. Therm. Eng. 106 (2016) 423-426.
  106. M. Dyba, S.W. Hell, Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution, Phys. Rev. Lett. 88 (2002) 163901.
  107. A. Daneyko, D. Hlushkou, S. Khirevich, U. Tallarek, From random sphere packings to regular pillar arrays: Analysis of transverse dispersion, J. Chromatogr. A 1257 (2012) 98-115.
  108. A. Daneyko, D. Hlushkou, S. Khirevich, U. Tallarek, From random sphere packings to regular pillar arrays: Analysis of transverse dispersion, J. Chromatogr. A 1257 (2012) 98-115.
  109. A. Daneyko, D. Hlushkou, S. Khirevich, U. Tallarek, From random sphere packings to regular pillar arrays: Analysis of transverse dispersion, J. Chromatogr. A 1257 (2012) 98-115.
  110. A. Daneyko, S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion, J. Chromatogr. A 1218 (2011) 8231-8248.
  111. A. Daneyko, S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion, J. Chromatogr. A 1218 (2011) 8231-8248.
  112. A. Daneyko, S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion, J. Chromatogr. A 1218 (2011) 8231-8248.
  113. A. Daneyko, S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion, J. Chromatogr. A 1218 (2011) 8231-8248.
  114. A. Daneyko, S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion, J. Chromatogr. A 1218 (2011) 8231-8248.
  115. M. Farooq Wahab, D.C. Patel, R.M. Wimalasinghe, D.W. Armstrong, Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns, (2017).
  116. F. Gritti, G. Guiochon, Fundamental chromatographic equations designed for columns packed with very fine particles and operated at very high pressures. Applications to the prediction of elution times and the column efficiencies, J. Chromatogr. A 1206 (2008) 113-122.
  117. F. Gritti, G. Guiochon, General HETP equation for the study of mass-transfer mechanisms in RPLC, Anal. Chem. 78 (2006) 5329-5347.
  118. J.C. Giddings, P.D. Schettler, General nonequilibrium theory of chromatography with complex flow transport, J. Phys. Chem. 73 (1969) 2577-2582.
  119. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios, J. Chromatogr. A 1262 (2012) 77-91.
  120. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios, J. Chromatogr. A 1262 (2012) 77-91.
  121. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios, J. Chromatogr. A 1262 (2012) 77-91.
  122. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios, J. Chromatogr. A 1262 (2012) 77-91.
  123. M. Camenzuli, H.J. Ritchie, R.A. Shalliker, Gradient elution chromatography with segmented parallel flow column technology: A study on 4.6 mm analytical scale columns, J. Chromatogr. A 1270 (2012) 204-211.
  124. J.W. Treadway, K.D. Wyndham, J.W. Jorgenson, Highly efficient capillary columns packed with superficially porous particles via sequential column packing, J. Chromatogr. A 1422 (2015) 345-349.
  125. M.R. Schure, R.S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography? J. Chromatogr. A 1126 (2006) 58-69.
  126. M.R. Schure, R.S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography? J. Chromatogr. A 1126 (2006) 58-69.
  127. M.R. Schure, R.S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography? J. Chromatogr. A 1126 (2006) 58-69.
  128. M.R. Schure, R.S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography? J. Chromatogr. A 1126 (2006) 58-69.
  129. J.P.C. Vissers, M.A. Hoeben, J. Laven, H.A. Claessens, C.A. Cramers, Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography, J. Chromatogr. A 883 (2000) 11-25.
  130. J.P.C. Vissers, M.A. Hoeben, J. Laven, H.A. Claessens, C.A. Cramers, Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography, J. Chromatogr. A 883 (2000) 11-25.
  131. J.P.C. Vissers, M.A. Hoeben, J. Laven, H.A. Claessens, C.A. Cramers, Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography, J. Chromatogr. A 883 (2000) 11-25.
  132. J.P.C. Vissers, M.A. Hoeben, J. Laven, H.A. Claessens, C.A. Cramers, Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography, J. Chromatogr. A 883 (2000) 11-25.
  133. J.P.C. Vissers, M.A. Hoeben, J. Laven, H.A. Claessens, C.A. Cramers, Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography, J. Chromatogr. A 883 (2000) 11-25.
  134. R. Arévalo, D. Maza, L.A. Pugnaloni, Identification of arches in two-dimensional granular packings, Phys. Rev. E 74 (2006) 021303.
  135. F. Gritti, G. Guiochon, Effect of parallel segmented flow chromatography on the height equivalent to a theoretical plate. II -Performances of 4.6 mm × 30 mm columns packed with 2.6 μm Accucore-C18 superficially porous particles, J. Chromatogr. A 1314 (2013) 44-53.
  136. S. Jung, A. Höltzel, S. Ehlert, J.A. Mora, K. Kraiczek, M. Dittmann, et al., Impact of conduit geometry on the performance of typical particulate microchip packings, Anal. Chem. 81 (2009) 10193-10200.
  137. S. Jung, A. Höltzel, S. Ehlert, J.A. Mora, K. Kraiczek, M. Dittmann, et al., Impact of conduit geometry on the performance of typical particulate microchip packings, Anal. Chem. 81 (2009) 10193-10200.
  138. S. Jung, A. Höltzel, S. Ehlert, J.A. Mora, K. Kraiczek, M. Dittmann, et al., Impact of conduit geometry on the performance of typical particulate microchip packings, Anal. Chem. 81 (2009) 10193-10200.
  139. H. Liasneuski, D. Hlushkou, S. Khirevich, A. Höltzel, U. Tallarek, S. Torquato, Impact of microstructure on the effective diffusivity in random packings of hard spheres, J. Appl. Phys. 116 (2014) 034904.
  140. J.M. Godinho, A.E. Reising, U. Tallarek, J.W. Jorgenson, Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns, J. Chromatogr. A 1462 (2016) 165-169.
  141. J.M. Godinho, A.E. Reising, U. Tallarek, J.W. Jorgenson, Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns, J. Chromatogr. A 1462 (2016) 165-169.
  142. M. Camenzuli, H.J. Ritchie, R.A. Shalliker, Improving HPLC separation performance using parallel segmented flow chromatography, Microchem. J. 111 (2013) 3-7.
  143. K.D. Patel, A.D. Jerkovich, J.C. Link, J.W. Jorgenson, In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography, Anal. Chem. 76 (2004) 5777-5786.
  144. K.D. Patel, A.D. Jerkovich, J.C. Link, J.W. Jorgenson, In-depth characterization of slurry packed capillary columns with 1.0-µm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography, Anal. Chem. 76 (2004) 5777-5786.
  145. K.D. Patel, A.D. Jerkovich, J.C. Link, J.W. Jorgenson, In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography, Anal. Chem. 76 (2004) 5777-5786.
  146. A. de Villiers, H. Lauer, R. Szucs, S. Goodall, P. Sandra, Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm I.D. columns, J. Chromatogr. A 1113 (2006) 84-91.
  147. A. de Villiers, H. Lauer, R. Szucs, S. Goodall, P. Sandra, Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm I.D. columns, J. Chromatogr. A 1113 (2006) 84-91.
  148. A. de Villiers, H. Lauer, R. Szucs, S. Goodall, P. Sandra, Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm I.D. columns, J. Chromatogr. A 1113 (2006) 84-91.
  149. S. Bruns, D. Stoeckel, B.M. Smarsly, U. Tallarek, Influence of particle properties on the wall region in packed capillaries, J. Chromatogr. A 1268 (2012) 53-63.
  150. S. Bruns, D. Stoeckel, B.M. Smarsly, U. Tallarek, Influence of particle properties on the wall region in packed capillaries, J. Chromatogr. A 1268 (2012) 53-63.
  151. S. Bruns, D. Stoeckel, B.M. Smarsly, U. Tallarek, Influence of particle properties on the wall region in packed capillaries, J. Chromatogr. A 1268 (2012) 53-63.
  152. S. Bruns, D. Stoeckel, B.M. Smarsly, U. Tallarek, Influence of particle properties on the wall region in packed capillaries, J. Chromatogr. A 1268 (2012) 53-63.
  153. F. Gritti, M. Martin, G. Guiochon, Influence of pressure on the properties of chromatographic columns: II. The column hold-up volume, J. Chromatogr. A 1070 (2005) 13-22.
  154. F. Gritti, M. Martin, G. Guiochon, Influence of pressure on the properties of chromatographic columns: II. The column hold-up volume, J. Chromatogr. A 1070 (2005) 13-22.
  155. A. Daneyko, A. Höltzel, S. Khirevich, U. Tallarek, Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings, Anal. Chem. 83 (2011) 3903-3910.
  156. A. Daneyko, A. Höltzel, S. Khirevich, U. Tallarek, Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings, Anal. Chem. 83 (2011) 3903-3910.
  157. A. Daneyko, A. Höltzel, S. Khirevich, U. Tallarek, Influence of the Particle Size Distribution on Hydraulic Permeability and Eddy Dispersion in Bulk Packings, Anal. Chem. 83 (2011) 3903-3910.
  158. F. Gritti, M. Martin, G. Guiochon, Influence of viscous friction heating on the efficiency of columns operated under very high pressures, Anal. Chem. 81 (2009) 3365-3384.
  159. F. Gritti, M. Martin, G. Guiochon, Influence of viscous friction heating on the efficiency of columns operated under very high pressures, Anal. Chem. 81 (2009) 3365-3384.
  160. F. Gritti, M. Martin, G. Guiochon, Influence of viscous friction heating on the efficiency of columns operated under very high pressures, Anal. Chem. 81 (2009) 3365-3384.
  161. F. Gritti, M. Martin, G. Guiochon, Influence of viscous friction heating on the efficiency of columns operated under very high pressures, Anal. Chem. 81 (2009) 3365-3384.
  162. F. Gritti, M. Martin, G. Guiochon, Influence of viscous friction heating on the efficiency of columns operated under very high pressures, Anal. Chem. 81 (2009) 3365-3384.
  163. P.P.R.M.L. Harks, F.M. Mulder, P.H.L. Notten, In situ methods for Li-ion battery research: A review of recent developments, J. Power Sources 288 (2015) 92-105.
  164. J.H. Knox, G.R. Laird, P.A. Raven, Interaction of radial and axial dispersion in liquid chromatography in relation to the "infinite diameter effect", J. Chromatogr. A 122 (1976) 129-145.
  165. J.H. Knox, G.R. Laird, P.A. Raven, Interaction of radial and axial dispersion in liquid chromatography in relation to the "infinite diameter effect," J. Chromatogr. A 122 (1976) 129-145.
  166. L.E. Silbert, Jamming of frictional spheres and random loose packing, Soft Matter 6 (2010) 2918-2924.
  167. L.E. Silbert, Jamming of frictional spheres and random loose packing, Soft Matter 6 (2010) 2918-2924.
  168. F. Gritti, G. Guiochon, Kinetic investigation of the relationship between the efficiency of columns and their diameter, J. Chromatogr. A 1218 (2011) 1592-1602.
  169. A.E. Reising, J.M. Godinho, K. Hormann, J.W. Jorgenson, U. Tallarek, Larger voids in mechanically stable, loose packings of 1.3 μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency, J. Chromatogr. A 1436 (2016) 118-132.
  170. A.E. Reising, J.M. Godinho, K. Hormann, J.W. Jorgenson, U. Tallarek, Larger voids in mechanically stable, loose packings of 1.3 μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency, J. Chromatogr. A 1436 (2016) 118-132.
  171. A.E. Reising, J.M. Godinho, K. Hormann, J.W. Jorgenson, U. Tallarek, Larger voids in mechanically stable, loose packings of 1.3 μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency, J. Chromatogr. A 1436 (2016) 118-132.
  172. S. Khirevich, A. Höltzel, S. Ehlert, A. Seidel-Morgenstern, U. Tallarek, Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings, Anal. Chem. 81 (2009) 4937-4945.
  173. S. Khirevich, A. Höltzel, S. Ehlert, A. Seidel-Morgenstern, U. Tallarek, Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings, Anal. Chem. 81 (2009) 4937-4945.
  174. S. Khirevich, A. Höltzel, S. Ehlert, A. Seidel-Morgenstern, U. Tallarek, Large-scale simulation of flow and transport in reconstructed microchip packings. Anal. Chem. 81 (2009) 4937-4945.
  175. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329-364.
  176. J.J. van Deemter, F.J. Zuiderweg, A. Klinkenberg, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem. Eng. Sci. 5 (1956) 271-289.
  177. G.R. Farrell, K.M. Martini, N. Menon, Loose packings of frictional spheres, Soft Matter 6 (2010) 2925-2930.
  178. G.R. Farrell, K.M. Martini, N. Menon, Loose packings of frictional spheres, Soft Matter 6 (2010) 2925-2930.
  179. L. Lapidus, N.R. Amundson, Mathematics of adsorption in beds VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns, J. Phys. Chem. 56 (1952) 984-988.
  180. B.G. Yew, E.C. Drumm, G. Guiochon, Mechanics of column beds: I. Acquisition of the relevant parameters, AIChE J. 49 (2003) 626-641.
  181. B.G. Yew, E.C. Drumm, G. Guiochon, Mechanics of column beds: I. Acquisition of the relevant parameters, AIChE J. 49 (2003) 626-641.
  182. B.G. Yew, J. Ureta, R.A. Shalliker, E.C. Drumm, G. Guiochon, Mechanics of column beds: II. Modeling of coupled stress-strain-flow behavior, AIChE J. 49 (2003) 642-664.
  183. B.G. Yew, J. Ureta, R.A. Shalliker, E.C. Drumm, G. Guiochon, Mechanics of column beds: II. Modeling of coupled stress-strain-flow behavior, AIChE J. 49 (2003) 642-664.
  184. B.G. Yew, J. Ureta, R.A. Shalliker, E.C. Drumm, G. Guiochon, Mechanics of column beds: II. Modeling of coupled stress-strain-flow behavior, AIChE J. 49 (2003) 642- 664.
  185. J. Zečević, C.J. Gommes, H. Friedrich, P.E. de Jongh, K.P. de Jong, Mesoporosity of Zeolite Y: Quantitative three-dimensional study by image analysis of electron tomograms, Angew. Chem. Int. Ed. 51 (2012) 4213-4217.
  186. M.J. Wirth, S. Ranasinghe Kodithuwakkuge, C. Yerneni, R. Birdsall, Method of packing chromatographic columns. WO2011127044 A2, Oct. 13, 2011.
  187. J.E. Baur, R.M. Wightman, Microcylinder electrodes as sensitive detectors for high- efficiency, high-speed liquid chromatography, J. Chromatogr. A 482 (1989) 65-73.
  188. H. Koku, R.S. Maier, K.J. Czymmek, M.R. Schure, A.M. Lenhoff, Modeling of flow in a polymeric chromatographic monolith, J. Chromatogr. A 1218 (2011) 3466−3475.
  189. G. Guiochon, Monolithic columns in high-performance liquid chromatography, J. Chromatogr. A 1168 (2007) 101-168.
  190. D. Stoeckel, C. Kübel, K. Hormann, A. Höltzel, B.M. Smarsly, U. Tallarek, Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography, Langmuir 30 (2014) 9022-9027.
  191. D. Stoeckel, C. Kübel, K. Hormann, A. Höltzel, B.M. Smarsly, U. Tallarek, Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography, Langmuir 30 (2014) 9022-9027.
  192. D. Stoeckel, C. Kübel, K. Hormann, A. Höltzel, B.M. Smarsly, U. Tallarek, Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography, Langmuir 30 (2014) 9022-9027.
  193. S. Bruns, T. Hara, B.M. Smarsly, U. Tallarek, Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency, J. Chromatogr. A 1218 (2011) 5187-5194.
  194. S. Bruns, T. Hara, B.M. Smarsly, U. Tallarek, Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency, J. Chromatogr. A 1218 (2011) 5187-5194.
  195. D. Stoeckel, C. Kübel, M.O. Loeh, B.M. Smarsly, U. Tallarek, Morphological analysis of physically reconstructed silica monoliths with submicrometer macropores: Effect of decreasing domain size on structural homogeneity, Langmuir 31 (2015) 7391-7400.
  196. D. Stoeckel, C. Kübel, M.O. Loeh, B.M. Smarsly, U. Tallarek, Morphological analysis of physically reconstructed silica monoliths with submicrometer macropores: Effect of decreasing domain size on structural homogeneity, Langmuir 31 (2015) 7391-7400.
  197. D. Stoeckel, C. Kübel, M.O. Loeh, B.M. Smarsly, U. Tallarek, Morphological analysis of physically reconstructed silica monoliths with submicrometer macropores: effect of decreasing domain size on structural homogeneity, Langmuir 31 (2015) 7391-7400.
  198. T. Müllner, A. Zankel, A. Höltzel, F. Svec, U. Tallarek, Morphological properties of methacrylate-based polymer monoliths: From gel porosity to macroscopic inhomogeneities, Langmuir 33 (2017) 2205-2214.
  199. T. Müllner, A. Zankel, A. Höltzel, F. Svec, U. Tallarek, Morphological properties of methacrylate-based polymer monoliths: from gel porosity to macroscopic inhomogeneities, Langmuir 33 (2017) 2205-2214.
  200. K. Hormann, T. Müllner, S. Bruns, A. Höltzel, U. Tallarek, Morphology and separation efficiency of a new generation of analytical silica monoliths, J. Chromatogr. A 1222 (2012) 46-58.
  201. K. Hormann, T. Müllner, S. Bruns, A. Höltzel, U. Tallarek, Morphology and separation efficiency of a new generation of analytical silica monoliths, J. Chromatogr. A 1222 (2012) 46-58.
  202. K. Hormann, T. Müllner, S. Bruns, A. Höltzel, U. Tallarek, Morphology and separation efficiency of a new generation of analytical silica monoliths, J. Chromatogr. A 1222 (2012) 46-58.
  203. S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns, Anal. Chem. 84 (2012) 4496-4503.
  204. S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns, Anal. Chem. 84 (2012) 4496-4503.
  205. S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns, Anal. Chem. 84 (2012) 4496-4503.
  206. S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns, Anal. Chem. 84 (2012) 4496-4503.
  207. S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns, Anal. Chem. 84 (2012) 4496-4503.
  208. G. Möbus, B.J. Inkson, Nanoscale tomography in materials science, Mater. Today. 10 (2007) 18-25.
  209. A. Vaast, H. Terryn, F. Svec, S. Eeltink, Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides, J. Chromatogr. A 1374 (2014) 171-179.
  210. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9 (2012) 671-675.
  211. F. Gritti, G. Guiochon, Non-invasive measurement of eddy diffusion in very efficient liquid chromatography columns packed with sub-3 µm shell particles, Chem. Eng. Sci. 65 (2010) 6327-6340.
  212. L.F.M. Coutinho, C.E.D. Nazario, A.M. Monteiro, F.M. Lancas, Novel devices for solvent delivery and temperature programming designed for capillary liquid chromatography, J. Sep. Sci. 37 (2014) 1903-1910.
  213. E. Shishkova, A.S. Hebert, J.J. Coon, Now, more than ever, proteomics needs better chromatography, Cell Syst. 3 (2016) 321-324.
  214. S. Janků, V. Škeříková, J. Urban, Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases, J. Chromatogr. A 1388 (2015) 151-157.
  215. L.A. Knecht, E.J. Guthrie, J.W. Jorgenson, On-column electrochemical detector with a single graphite fiber electrode for open-tubular liquid chromatography, Anal. Chem. 56 (1984) 479-482.
  216. L.A. Knecht, E.J. Guthrie, J.W. Jorgenson, On-column electrochemical detector with a single graphite fiber electrode for open-tubular liquid chromatography, Anal. Chem. 56 (1984) 479-482.
  217. L.A. Knecht, E.J. Guthrie, J.W. Jorgenson, On-column electrochemical detector with a single graphite fiber electrode for open-tubular liquid chromatography, Anal. Chem. 56 (1984) 479-482.
  218. M. Jerkins, M. Schröter, H.L. Swinney, T.J. Senden, M. Saadatfar, T. Aste, Onset of mechanical stability in random packings of frictional spheres, Phys. Rev. Lett. 101 (2008) 018301.
  219. M. Jerkins, M. Schröter, H.L. Swinney, T.J. Senden, M. Saadatfar, T. Aste, Onset of mechanical stability in random packings of frictional spheres, Phys. Rev. Lett. 101 (2008) 018301.
  220. F. Gritti, T. Farkas, J. Heng, G. Guiochon, On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: Theory and practice, J. Chromatogr. A 1218 (2011) 8209-8221.
  221. F. Gritti, T. Farkas, J. Heng, G. Guiochon, On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: Theory and practice, J. Chromatogr. A 1218 (2011) 8209-8221.
  222. S. Ehlert, T. Rösler, U. Tallarek, Packing density of slurry-packed capillaries at low aspect ratios, J. Sep. Sci. 31 (2008) 1719-1728.
  223. S. Ehlert, T. Rösler, U. Tallarek, Packing density of slurry-packed capillaries at low aspect ratios, J. Sep. Sci. 31 (2008) 1719-1728.
  224. R.A. Shalliker, M. Camenzuli, L. Pereira, H.J. Ritchie, Parallel segmented flow chromatography columns: Conventional analytical scale column formats presenting as a "virtual" narrow bore column, J. Chromatogr. A 1262 (2012) 64-69.
  225. M. Franc, J. Vojta, J. Sobotníková, P. Coufal, Z. Bosáková, Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography, Chem. Pap. 68 (2014) 22-28.
  226. J.J. DeStefano, S.A. Schuster, J.M. Lawhorn, J.J. Kirkland, Performance characteristics of new superficially porous particles, J. Chromatogr. A 1258 (2012) 76-83.
  227. J.J. DeStefano, S.A. Schuster, J.M. Lawhorn, J.J. Kirkland, Performance characteristics of new superficially porous particles, J. Chromatogr. A 1258 (2012) 76-83.
  228. J.J. DeStefano, S.A. Schuster, J.M. Lawhorn, J.J. Kirkland, Performance characteristics of new superficially porous particles, J. Chromatogr. A 1258 (2012) 76-83.
  229. F. Gritti, G. Guiochon, Performance of new prototype packed columns for very high pressure liquid chromatography, J. Chromatogr. A 1217 (2010) 1485-1495.
  230. F. Gritti, G. Guiochon, Perspectives on the Evolution of the Column Efficiency in Liquid Chromatography, Anal. Chem. 85 (2013) 3017-3035.
  231. F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (2013) 3017-3035.
  232. F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (2013) 3017-3035.
  233. F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (2013) 3017-3035.
  234. F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (2013) 3017-3035.
  235. F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (2013) 3017-3035.
  236. R.A. Shalliker, B.S. Broyles, G. Guiochon, Physical evidence of two wall effects in liquid chromatography, J. Chromatogr. A 888 (2000) 1-12.
  237. R.A. Shalliker, B.S. Broyles, G. Guiochon, Physical evidence of two wall effects in liquid chromatography, J. Chromatogr. A 888 (2000) 1-12.
  238. R.A. Shalliker, B.S. Broyles, G. Guiochon, Physical evidence of two wall effects in liquid chromatography, J. Chromatogr. A 888 (2000) 1-12.
  239. R.A. Shalliker, B.S. Broyles, G. Guiochon, Physical evidence of two wall effects in liquid chromatography, J. Chromatogr. A 888 (2000) 1-12.
  240. R.A. Shalliker, B.S. Broyles, G. Guiochon, Physical evidence of two wall effects in liquid chromatography, J. Chromatogr. A 888 (2000) 1-12.
  241. S. Bruns, U. Tallarek, Physical reconstruction of packed beds and their morphological analysis: Core-shell packings as an example, J. Chromatogr. A 1218 (2011) 1849- 1860.
  242. S. Bruns, U. Tallarek, Physical reconstruction of packed beds and their morphological analysis: Core-shell packings as an example, J. Chromatogr. A 1218 (2011) 1849-1860.
  243. S. Bruns, U. Tallarek, Physical reconstruction of packed beds and their morphological analysis: Core-shell packings as an example, J. Chromatogr. A 1218 (2011) 1849-1860.
  244. S. Bruns, U. Tallarek, Physical reconstruction of packed beds and their morphological analysis: Core-shell packings as an example, J. Chromatogr. A 1218 (2011) 1849-1860.
  245. O.H. Ismail, L. Pasti, A. Ciogli, C. Villani, J. Kocergin, S. Anderson, et al., Pirkle-type chiral stationary phase on core-shell and fully porous particles: are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations? J. Chromatogr. A 1466 (2016) 96-104.
  246. I. Nischang, Porous polymer monoliths: Morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance, J. Chromatogr. A 1287 (2013) 39-58.
  247. L. Nováková, J.L. Veuthey, D. Guillarme, Practical method transfer from high performance liquid chromatography to ultra-high performance liquid chromatography: The importance of frictional heating, J. Chromatogr. A 1218 (2011) 7971-7981.
  248. R.T. Kennedy, J.W. Jorgenson, Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 micrometers, Anal. Chem. 61 (1989) 1128-1135.
  249. S. Hsieh, J.W. Jorgenson, Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 μm, Anal. Chem. 68 (1996) 1212-1217.
  250. S. Hsieh, J.W. Jorgenson, Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 microns, Anal. Chem. 68 (1996) 1212-1217.
  251. S. Hsieh, J.W. Jorgenson, Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 microns, Anal. Chem. 68 (1996) 1212-1217.
  252. O. Mozziconacci, J.T. Stobaugh, R. Bommana, J. Woods, E. Franklin, J.W. Jorgenson, et al., Profiling the photochemical-induced degradation of rat growth hormone with extreme ultra-pressure chromatography-mass spectrometry utilizing meter-long microcapillary columns cacked with sub-2 µm particles, Chromatographia (2017).
  253. J. Zečević, K.P. de Jong, P.E. de Jongh, Progress in electron tomography to assess the 3D nanostructure of catalysts, Curr. Opin. Solid State Mater. Sci. 17 (2013) 115-125.
  254. J.E. Baur, E.W. Kristensen, R.M. Wightman, Radial dispersion from commercial high- performance liquid chromatography columns investigated with microvoltammetric electrodes, Anal. Chem. 60 (1988) 2334-2338.
  255. J.E. Baur, E.W. Kristensen, R.M. Wightman, Radial dispersion from commercial high- performance liquid chromatography columns investigated with microvoltammetric electrodes., Anal. Chem. 60 (1988) 2334-2338.
  256. T. Farkas, M.J. Sepaniak, G. Guiochon, Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column, AIChE J. 43 (1997) 1964-1974.
  257. J.A. Abia, K.S. Mriziq, G.A. Guiochon, Radial heterogeneity of some analytical columns used in high-performance liquid chromatography, J. Chromatogr. A 1216 (2009) 3185- 3191.
  258. J.A. Abia, K.S. Mriziq, G.A. Guiochon, Radial heterogeneity of some analytical columns used in high-performance liquid chromatography, J. Chromatogr. A 1216 (2009) 3185- 3191.
  259. V. Baranau, U. Tallarek, Random-close packing limits for monodisperse and polydisperse hard spheres, Soft Matter 10 (2014) 3826-3841.
  260. V. Baranau, U. Tallarek, Random-close packing limits for monodisperse and polydisperse hard spheres, Soft Matter 10 (2014) 3826-3841.
  261. J.M. Valverde, A. Castellanos, Random loose packing of cohesive granular materials, Europhys. Lett. 75 (2006) 985-991.
  262. J.M. Valverde, A. Castelllanos, Random loose packing of cohesive granular materials, Europhys. Lett. 75 (2007) 985-991.
  263. G.Y. Onoda, E.G. Liniger, Random loose packings of uniform spheres and the dilatancy onset, Phys. Rev. Lett. 64 (1990) 2727-2730.
  264. G.Y. Onoda, E.G. Liniger, Random loose packings of uniform spheres and the dilatancy onset, Phys. Rev. Lett. 64 (1990) 2727-2730.
  265. M. Catani, O.H. Ismail, F. Gasparrini, M. Antonelli, L. Pasti, N. Marchetti, S. Felletti, A. Cavazzini, Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations, Analyst 142 (2017), 555-566.
  266. M. Catani, O.H. Ismail, F. Gasparrini, M. Antonelli, L. Pasti, N. Marchetti, et al., Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations, Analyst. 142 (2017) 555-566.
  267. T. Müllner, A. Zankel, C. Mayrhofer, H. Reingruber, A. Höltzel, Y. Lv, et al., Reconstruction and characterization of a polymer-based monolithic stationary phase using serial block-face scanning electron microscopy, Langmuir 28 (2012) 16733- 16737.
  268. T. Müllner, A. Zankel, C. Mayrhofer, A. Höltzel, Y. Lv, F. Svec, et al., Reconstruction and characterization of polymer-based monolithic stationary phases using serial block- face scanning electron microscopy, Langmuir 28 (2012) 16733-16737.
  269. M. Ferré, R. Pleixats, M. Wong Chi Man, X. Cattoën, Recyclable organocatalysts based on hybrid silicas, Green Chem. 18 (2016) 881-922.
  270. F. Gritti, G. Guiochon, Relationship between trans-column eddy diffusion and retention in liquid chromatography: Theory and experimental evidence, J. Chromatogr. A 1217 (2010) 6350-6365.
  271. F. Gritti, G. Guiochon, Relationship between trans-column eddy diffusion and retention in liquid chromatography: Theory and experimental evidence, J. Chromatogr. A 1217 (2010) 6350-6365.
  272. L. Holzer, M. Cantoni, Review of FIB-tomography, in: I. Utke, S. Moshkalev, Ph. Russell (Eds.), Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications, Oxford University Press, New York, 2012, pp. 410-435.
  273. K.J. Dong, R.Y. Yang, R.P. Zou, A.B. Yu, Role of interparticle forces in the formation of random loose packing, Phys. Rev. Lett. 96 (2006) 145505.
  274. K.J. Dong, R.Y. Yang, R.P. Zou, A.B. Yu, Role of interparticle forces in the formation of random loose packing, Phys. Rev. Lett. 96 (2006) 145505.
  275. R.A. Shalliker, H. Ritchie, Segmented flow and curtain flow chromatography: Overcoming the wall effect and heterogeneous bed structures, J. Chromatogr. A 1335 (2014) 122-135.
  276. R.A. Shalliker, H. Ritchie, Segmented flow and curtain flow chromatography: overcoming the wall effect and heterogeneous bed structures, J. Chromatogr. A 1335 (2014) 122-135.
  277. A. Maiolica, D. Borsotti, J. Rappsilber, Self-made frits for nanoscale columns in proteomics, Proteomics 5 (2005) 3847-3850.
  278. A. Maiolica, D. Borsotti, J. Rappsilber, Self-made frits for nanoscale columns in proteomics, Proteomics 5 (2005) 3847-3850.
  279. A. Maiolica, D. Borsotti, J. Rappsilber, Self-made frits for nanoscale columns in proteomics, Proteomics 5 (2005) 3847-3850.
  280. S. Ehlert, K. Kraiczek, J.A. Mora, M. Dittmann, G.P. Rozing, U. Tallarek, Separation efficiency of particle-packed HPLC microchips, Anal. Chem. 80 (2008) 5945-5950.
  281. S. Ehlert, K. Kraiczek, J.A. Mora, M. Dittmann, G.P. Rozing, U. Tallarek, Separation efficiency of particle-packed HPLC microchips, Anal. Chem. 80 (2008) 5945-5950.
  282. S. Ehlert, K. Kraiczek, J.A. Mora, M. Dittmann, G.P. Rozing, U. Tallarek, Separation efficiency of particle-packed HPLC microchips, Anal. Chem. 80 (2008) 5945-5950.
  283. W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure, PLoS Biol. 2 (2004) 1900-1909.
  284. A. Garcimartín, I. Zuriguel, L.A. Pugnaloni, A. Janda, Shape of jamming arches in two-dimensional deposits of granular materials, Phys. Rev. E 82 (2010) 031306.
  285. G. Guiochon, F. Gritti, Shell particles, trials, tribulations and triumphs, J. Chromatogr. A 1218 (2011) 1915-1938.
  286. G. Guiochon, F. Gritti, Shell particles, trials, tribulations and triumphs, J. Chromatogr. A 1218 (2011) 1915-1938.
  287. S. Bruns, E.G. Franklin, J.P. Grinias, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 μm particles, J. Chromatogr. A 1318 (2013) 189-197.
  288. S. Bruns, E.G. Franklin, J.P. Grinias, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 µm particles, J. Chromatogr. A 1318 (2013) 189-197.
  289. S. Bruns, E.G. Franklin, J.P. Grinias, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 μm particles, J. Chromatogr. A 1318 (2013) 189-197.
  290. S. Bruns, E.G. Franklin, J.P. Grinias, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 µm particles, J. Chromatogr. A 1318 (2013) 189-197.
  291. S. Bruns, E.G. Franklin, J.P. Grinias, J.M. Godinho, J.W. Jorgenson, U. Tallarek, Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 µm particles, J. Chromatogr. A 1318 (2013) 189-197.
  292. D. Enke, R. Gläser, U. Tallarek, Sol-gel and porous glass-based silica monoliths with hierarchical pore structure for solid-liquid catalysis, Chem. Ing. Tech. 88 (2016) 1561- 1585.
  293. D. Enke, R. Gläser, U. Tallarek, Sol-Gel and Porous Glass-Based Silica Monoliths with Hierarchical Pore Structure for Solid-Liquid Catalysis, Chem. Ing. Tech. 88 (2016) 1561-1585.
  294. A. Mehta, Spatial, dynamical and spatiotemporal heterogeneities in granular media, Soft Matter 6 (2010) 2875-2883.
  295. C. Lozano, I. Zuriguel, A. Garcimartín, Stability of clogging arches in a silo submitted to vertical vibrations, Phys. Rev. E 91 (2015) 062203.
  296. S. Khirevich, A. Daneyko, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion, J. Chromatogr. A 1217 (2010) 4713-4722.
  297. L.A. Pugnaloni, G.C. Barker, Structure and distribution of arches in shaken hard sphere deposits, Physica A 337 (2004) 428-442.
  298. S. Khirevich, A. Höltzel, A. Daneyko, A. Seidel-Morgenstern, U. Tallarek, Structure- transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings, J. Chromatogr. A 1218 (2011) 6489-6497.
  299. A.A. Olajire, Synthesis of bare and functionalized porous adsorbent materials for CO2 capture, Greenh. Gases Sci. Technol. 7 (2017) 399-459.
  300. J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical high- performance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.
  301. J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical high- performance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.
  302. J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical high- performance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.
  303. J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical high- performance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.
  304. J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical high- performance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.
  305. F. Gritti, G. Guiochon, The current revolution in column technology: How it began, where is it going? J. Chromatogr. A 1228 (2012) 2-19.
  306. F. Gritti, G. Guiochon, The current revolution in column technology: How it began, where is it going? J. Chromatogr. A 1228 (2012) 2-19.
  307. M. Camenzuli, H.J. Ritchie, J.R. Ladine, R.A. Shalliker, The design of a new concept chromatography column, Analyst 136 (2011) 5127-5130.
  308. F. Tariq, P.D. Lee, R. Haswell, D.W. McComb, The influence of nanoscale microstructural variations on the pellet scale flow properties of hierarchical porous catalytic structures using multiscale 3D imaging, Chem. Eng. Sci. 66 (2011) 5804- 5812.
  309. C.A. Rimmer, C.R. Simmons, J.G. Dorsey, The measurement and meaning of void volumes in reversed-phase liquid chromatography, J. Chromatogr. A 965 (2002) 219- 232.
  310. F. Gritti, G. Guiochon, Theoretical and experimental impact of the bed aspect ratio on the axial dispersion coefficient of columns packed with 2.5 μm particles, J. Chromatogr. A 1262 (2012) 107-121.
  311. L. Wang, W. Ding, Y. Sun, The preparation and application of mesoporous materials for energy storage, Mater. Res. Bull. 83 (2016) 230-249.
  312. F. Gritti, G. Guiochon, The van Deemter equation: assumptions, limits, and adjustment to modern high performance liquid chromatography, J. Chromatogr. A 1302 (2013) 1- 13.
  313. M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, P. Munroe, Three-dimensional microstructural characterization using focused ion beam tomography, MRS Bull. 32 (2007) 408-416.
  314. A.P. Cocco, G.J. Nelson, W.M. Harris, A. Nakajo, T.D. Myles, A.M. Kiss, J.J. Lombardo, W.K.S. Chiu, Three-dimensional microstructural imaging methods for energy materials, Phys. Chem. Chem. Phys. 15 (2013) 16377-16407.
  315. E.P.W. Ward, T.J.V. Yates, J.-J. Fernández, D.E.W. Vaughan, P.A. Midgley, Three- dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography, J. Phys. Chem. C 111 (2007) 11501-11505.
  316. Y. Yao, K.J. Czymmek, R. Pazhianur, A.M. Lenhoff, Three-dimensional pore structure of chromatographic adsorbents from electron tomography, Langmuir 22 (2006) 11148- 11157.
  317. H. Jinnai, K. Nakanishi, Y. Nishikawa, J. Yamanaka, T. Hashimoto, Three-dimensional structure of a sintered macroporous silica gel, Langmuir 17 (2001) 619-625.
  318. Z. Liu, Y.K. Chen-Wiegart, J. Wang, S.A. Barnett, K.T. Faber, Three-phase 3D reconstruction of a LiCoO2 cathode via FIB-SEM tomography, Microsc. Microanal. 22 (2016) 140-148.
  319. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Time and length scales of eddy dispersion in chromatographic beds, Anal. Chem. 81 (2009) 7057-7066.
  320. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Time and length scales of eddy dispersion in chromatographic beds, Anal. Chem. 81 (2009) 7057-7066.
  321. S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, U. Tallarek, Time and length scales of eddy dispersion in chromatographic beds, Anal. Chem. 81 (2009) 7057-7066.
  322. P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cem. Concr. Res. 37 (2007) 351-359.
  323. P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cem. Concr. Res. 37 (2007) 351-359.
  324. P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cem. Concr. Res. 37 (2007) 351-359.
  325. P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cem. Concr. Res. 37 (2007) 351-359.
  326. P.R. Shearing, D.J.L. Brett, N.P. Brandon, Towards intelligent engineering of SOFC electrodes: A review of advanced microstructural characterisation techniques, Int. Mater. Rev. 55 (2010) 347-363.
  327. J.B. Cook, H.-S. Kim, T.C. Lin, S. Robbennolt, E. Detsi, B.S. Dunn, et al., Tuning porosity and surface area in mesoporous silicon for application in Li-ion battery electrodes, ACS Appl. Mater. Interfaces 9 (2017) 19063-19073.
  328. J.E. MacNair, K.D. Patel, J.W. Jorgenson, Ultrahigh-pressure reversed-phase capillary liquid chromatography: Isocratic and gradient elution using columns packed with 1.0- μm particles, Anal. Chem. 71 (1999) 700-708.
  329. J.E. MacNair, K.D. Patel, J.W. Jorgenson, Ultrahigh-pressure reversed-phase capillary liquid chromatography: Isocratic and gradient elution using columns packed with 1.0- µm particles, Anal. Chem. 71 (1999) 700-708.
  330. J.E. MacNair, K.C. Lewis, J.W. Jorgenson, Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns, Anal. Chem. 69 (1997) 983-989.
  331. J.E. MacNair, K.C. Lewis, J.W. Jorgenson, Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns, Anal. Chem. 69 (1997) 983-989.
  332. A. Zankel, B. Kraus, P. Poelt, M. Schaffer, E. Ingolic, Ultramicrotomy in the ESEM, a versatile method for materials and life sciences, J. Microsc. 233 (2009) 140-148.
  333. J.S. Mellors, J.W. Jorgenson, Use of 1.5 micron porous ethyl-bridged hybrid particles as a stationary phase support for reversed-phase ultra-high pressure liquid chromatography, Anal. Chem. 76 (2004) 5441-5450.
  334. J.S. Mellors, J.W. Jorgenson, Use of 1.5 micron porous ethyl-bridged hybrid particles as a stationary phase support for reversed-phase ultra-high pressure liquid chromatography, Anal. Chem. 76 (2004) 5441-5450.
  335. J.S. Mellors, J.W. Jorgenson, Use of 1.5-μm porous ethyl-bridged hybrid particles as a stationary-phase support for reversed-phase ultrahigh-pressure liquid chromatography, Anal. Chem. 76 (2004) 5441-5450.
  336. S. Fanali, S. Rocchi, B. Chankvetadze, Use of novel phenyl-hexyl core-shell particles in nano-LC, Electrophoresis 34 (2013) 1737-1742.
  337. S. Fanali, S. Rocchi, B. Chankvetadze, Use of novel phenyl-hexyl core-shell particles in nano-LC, Electrophoresis 34 (2013) 1737-1742.
  338. E.G. Franklin, Utilization of Long Columns Packed with Sub-2 μm Particles Operated at High Pressures and Elevated Temperatures for High-Efficiency One-Dimensional Liquid Chromatographic Separations. Ph.D. Dissertation, The University of North Carolina at Chapel Hill, 2012.
  339. S. Kiesgen de Richter, C. Hanotin, P. Marchal, S. Leclerc, F. Demeurie, N. Louvet, Vibration-induced compaction of granular suspensions, Eur. Phys. J. E 38 (2015) 74.
  340. R.A. Shalliker, V. Wong, B.S. Broyles, G. Guiochon, Visualization of bed compression in an axial compression liquid chromatography column, J. Chromatogr. A 977 (2002) 213-223.
  341. S. Mitchell, N.-L. Michels, K. Kunze, J. Pérez-Ramírez, Visualization of hierarchically structured zeolite bodies from macro to nano length scales, Nature Chem. 4 (2012) 825-831.
  342. T. Yun, G. Guiochon, Visualization of the heterogeneity of column beds, J. Chromatogr. A 760 (1997) 17-24.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten