Publikationsserver der Universitätsbibliothek Marburg

Titel:Photoexcitation dynamics and disorder effects in organic donor/acceptor systems
Autor:Gerhard, Marina
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0863
URN: urn:nbn:de:hebis:04-z2016-08630
DOI: https://doi.org/10.17192/z2016.0863
DDC: Physik
Titel (trans.):Dynamik lichtelektrischer Anregung und Störungseffekte in organischen Donor-Akzeptor Systemen
Publikationsdatum:2016-12-14
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
Ladungstrennung, Charge Transfer Zustand, Fulleren, Lumineszenztilgung, Fotophysik, Hüpftransport, Ladungstransfer, hopping transport, Halbleiter, organische Solarzelle, Grenzfläche, charge transfer state, Bindungsenergie, time-resolved photoluminescence, zeitaufgelöste Photolumineszenz, Organische, luminescence quenching, Organischer Halbleiter, Exziton, organic solar cell

Summary:
Organic semiconductors are a promising material class for applications in photovoltaics with photoconversion efficiencies beyond 10 % reported in recent years. However, despite this progress, the underlying photophysical processes of charge generation still need to be understood in greater detail. In contrast to most of their inorganic counterparts, absorption of light does not directly lead to the formation of free charges in organic systems. The primary photoexcitations in organic systems are Coulombically bound electron-hole pairs, so-called excitons. In order to promote exciton separation, the active layer in organic solar cells is therefore comprised of a donor/acceptor-blend, also known as bulk-heterojunction. In such a device, charge separation occurs at the donor/acceptor interfaces. In this context, so-called charge-transfer (CT) states are regarded as precursors for charges, signifying electron-hole pairs, which are still weakly correlated across the donor/acceptor interface. The strength of the Coulomb interaction involved is decisive for the photoconversion efficiency of an organic solar cell, as it may either promote exciton recombination or dissociation. The present work employs time-resolved photoluminescence (PL) spectroscopy to investigates radiative recombination losses, which naturally accompany the process of charge separation. The studies focus on two prototypical donor/acceptor systems P3HT/PC61BM and PTB7/PC71BM, respectively. First, luminescence decay in the neat polymers P3HT and PTB7 is characterized. The observed time-dependent red shift of the signatures is typical for organic systems and results from preferential exothermic hops of the excitons in a disordered density of states. The energetic relaxation of the emission in P3HT is consistent with an underlying Gaussian density of states. The relaxation in PTB7 is however stronger than expected, which might be due to the presence of a higher number of low-energetic tail states with respect to a typically expected Gaussian profile. In a next step, the PL of P3HT/PC61BM and PTB7/PC71BM mix films is studied. Beside the emission of so-called singlet excitons, which are also observed for the neat material, in both systems a CT signature is identified in the near-infrared. Both the CT intensity and also the drop of singlet emission intensity in blends with respect to the neat material are found to be correlated with the presence of an intimately mixed donor/acceptor phase. Furthermore, temperature-dependent PL studies show that in both material systems a high fraction of the CT emission is quenched with the help of thermal energy, suggesting that the CT binding energy is rather weak. In the final part of this work, the field-induced PL quenching in a PTB7/PCBM device is investigated under various temperatures. The decay of the PL intensity in an electric field arises from an enhanced dissociation rate of the excitons. The field-dependence of the PL quenching is thus related to the exciton binding energy. The binding energies are quantified employing a kinetic model known from literature, which is based on the assumption that exciton dissociation occurs via a multi-step hopping mechanism. The model gives an appropriate description of the data when (i) the underlying disorder is taken into account and when (ii) it is assumed that the Coulomb potential at the interface is effectively screened. The results suggest that the CT state in the PTB7/PCBM mix phase has a binding energy of about 50 meV, which is almost one order of magnitude below the binding energy of singlet excitons. The CT state can thus be regarded as a precursor for charges rather than a recombination center, as thermal energy present in the system largely promotes its dissociation. Overall, a methodological framework is presented in this work to identify and characterize the relatively weakly emitting CT states in organic donor/acceptor systems. The employed hopping model gives good agreement with the experimentally observed PL quenching over the whole investigated temperature range between 10 and 290 K. Moreover, it is demonstrated that approaches beyond the commonly applied Onsager-Braun model should be taken for an appropriate description of the charge separation process.

Bibliographie / References

  1. [53] K. Watanabee and M. Zelikoff. “Absorption Coefficients of Water Vapor in the Vacuum Ultraviolet”. Journal of the Optical Society of America 43 (9) (1953), pp. 756-759.
  2. [110] E. E. Havinga, W. ten Hoeve, and H. Wynberg. “Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines”. Synthetic Metals 55 (1) (1993), pp. 299-309.
  3. [109] E. E. Havinga, W. ten Hoeve, and H. Wynberg. “A new class of small band gap organic polymer conductors”. Polymer Bulletin 29 (1992), pp. 119-126.
  4. [25] D. M. Chapin, C. S. Fuller, and G. L. Pearson. “A new silicon p-n junction photocell for converting solar radiation into electrical power”. Journal of Applied Physics 25 (5) (1954), pp. 676-677.
  5. [55] E. Condon. “A theory of intensity distribution in band systems”. Physical Review 28 (6) (1926), pp. 1182-1201.
  6. [63] D. L. Dexter. “A Theory of Sensitized Luminescence in Solids”. The Journal of Chemical Physics 21 (5) (1953), pp. 836-850.
  7. [127] Y. Zou, A. Najari, P. Berrouard, S. Beaupr´e, B. R. A¨ıch, Y. Tao, and M. Leclerc. “A Thieno[3,4-c] pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells”. Journal of the American Chemical Society 132 (15) (2010), pp. 5330-5331.
  8. [52] H. Ba¨ssler and A. K¨ohler. “Hot or cold: how do charge transfer states at the donor/acceptor interface of an organic solar cell dissociate?” Physical Chemistry Chemical Physics 17 (43) (2015), pp. 28451-28462.
  9. [36] R. Kersting, U. Lemmer, M. Deussen, H. Bakker, R. Mahrt, H. Kurz, V. Arkhipov, H. Ba¨ssler, and E. Go¨bel. “Ultrafast Field-Induced Dissociation of Excitons in Conjugated Polymers”. Physical Review Letters 73 (10) (1994), pp. 1440-1443.
  10. [76] J. Kern, S. Schwab, C. Deibel, and V. Dyakonov. “Binding energy of singlet excitons and charge transfer complexes in MDMO-PPV:PCBM solar cells”. Physica Status Solidi Rapid Research Letters 5 (10-11) (2011), pp. 364-366.
  11. [153] K. Chen, A. J. Barker, M. E. Reish, K. C. Gordon, and J. M. Hodgkiss. “Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via delocalized hot excitons in polymer:fullerene photovoltaic blends.” Journal of the American Chemical Society 135 (49) (2013), pp. 18502-18512.
  12. [29] H. Kallman and M. Pope. “Bulk Conductivity in Organic Crystals”. Nature 186 (4718) (1960), pp. 31-33.
  13. [124] S. H. Park, A. Roy, S. Beaupr´e, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger. “Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %”. Nature Photonics 3 (5) (2009), pp. 297- 302.
  14. [89] S. D. Baranovskii, M. Wiemer, A. V. Nenashev, F. Jansson, and F. Gebhard. “Calculating the Efficiency of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor”. The Journal of Physical Chemistry Letters 3 (9) (2012), pp. 1214-1221.
  15. [87] P. D. Cunningham and L. M. Hayden. “Carrier Dynamics Resulting from Above and Below Gap Excitation of P3HT and P3HT/PCBM Investigated by OpticalPump Terahertz-Probe Spectroscopy”. The Journal of Physical Chemistry C 112 (21) (2008), pp. 7928-7935.
  16. [160] I. W. Hwang, S. Cho, J. Y. Kim, K. Lee, N. E. Coates, D. Moses, and A. J. Heeger. “Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive”. Journal of Applied Physics 104 (3) (2008), p. 033706.
  17. [169] D. W. Gehrig, I. A. Howard, and F. Laquai. “Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC60BM Photovoltaic Blends”. The Journal of Physical Chemistry C 119 (24) (2015), pp. 13509-13515.
  18. [193] B. Ebenhoch, S. A. J. Thomson, K. Geneviˇcius, G. Juˇska, and I. D. Samuel. “Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance”. Organic Electronics 22 (2015), pp. 62-68.
  19. “Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with PC70BM”.
  20. [192] D. Rauh, C. Deibel, and V. Dyakonov. “Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells”. Advanced Functional Materials 22 (16) (2012), pp. 3371-3377.
  21. [133] S. Shoaee, S. Subramaniyan, H. Xin, C. Keiderling, P. S. Tuladhar, F. Jamieson, S. A. Jenekhe, and J. R. Durrant. “Charge photogeneration for a series of thiazolo-thiazole donor polymers blended with the fullerene electron acceptors PCBM and ICBA”. Advanced Functional Materials 23 (26) (2013), pp. 3286- 3298.
  22. [49] T. M. Clarke and J. R. Durrant. “Charge Photogeneration in Organic Solar Cells.” Chemical Reviews 110 (11) (2010), pp. 6736-6767.
  23. [199] G. D'Avino, L. Muccioli, Y. Olivier, and D. Beljonne. “Charge separation and recombination at polymer-fullerene heterojunctions: Delocalization and hybridization effects”. The Journal of Physical Chemistry Letters 7 (3) (2016), pp. 536- 540.
  24. [79] J. L. Br´edas, D. Beljonne, V. Coropceanu, and J. Cornil. “Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture”. Chemical Reviews 104 (11) (2004), pp. 4971-5003.
  25. [185] M. Hallermann, S. Haneder, and E. Da Como. “Charge-transfer states in conjugated polymer/fullerene blends: Below-gap weakly bound excitons for polymer photovoltaics”. Applied Physics Letters 93 (5) (2008), p. 053307.
  26. [78] H Ba¨ssler. “Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study”. Physica Status Solidi B 175 (1) (1993), pp. 15-56.
  27. [154] L. G. Kaake, D. Moses, and A. J. Heeger. “Coherence and Uncertainty in Nanostructured Organic Photovoltaics”. The Journal of Physical Chemistry Letters 4 (14) (2013), pp. 2264-2268.
  28. [57] F. Dubin, R. Melet, T. Barisien, L. Legrand, R. Grousson, M. Schott, and V. Voliotis. “Coherent exciton state in an organic quantum wire”. Nature Physics 2 (1) (2006), pp. 32-35.
  29. [180] D. Veldman, O. Ipek, S. C. J. Meskers, J. Sweelssen, M. M. Koetse, S. C. Veenstra, J. M. Kroon, S. S. van Bavel, J. Loos, and R. A. J. Janssen. “Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends”. Journal of the American Chemical Society 130 (24) (2008), pp. 7721-7735.
  30. [157] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant. “Composition and annealing effects in polythiophene/fullerene solar cells”. Journal of Materials Science 40 (6) (2005), pp. 1371-1376.
  31. [188] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions”. SIAM Journal on Optimization 9 (1) (1998), pp. 112-147.
  32. [190] Y. W. Soon, H. Cho, J. Low, H. Bronstein, I. McCulloch, and J. R. Durrant. “Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films”. Chemical Communications 49 (13) (2013), pp. 1291-1293.
  33. [195] Z. Liang, A. Nardes, D. Wang, J. J. Berry, and B. A. Gregg. “Defect engineering in π-conjugated polymers”. Chemistry of Materials 21 (20) (2009), pp. 4914- 4919.
  34. [134] B. Bernardo, D. Cheyns, B. Verreet, R. D. Schaller, B. P. Rand, and N. C. Giebink. “Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells”. Nature Communications 5 (3245) (2014), pp. 1-7.
  35. [114] C. Kitamura, S. Tanaka, and Y. Yamashita. “Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing AromaticDonor and o-Quinoid-Acceptor Units”. Chemistry of Materials 8 (2) (1996), pp. 570-578.
  36. [93] L. Onsager. “Deviations from Ohm's Law in Weak Electrolytes”. The Journal of Chemical Physics 2 (9) (1934), pp. 599-615.
  37. [81] B. Movaghar, B. Ries, and M. Gru¨newald. “Diffusion and relaxation of energy in disordered systems: Departure from mean-field theories”. Physical Review B 34 (8) (1986), pp. 5574-5582.
  38. [56] S. D. Colson, D. M. Hanson, R. Kopelman, and G. W. Robinson. “Direct Observation of Entire Exciton Band of First Excited Singlet States of Crystalline Benzene and Naphthalene”. The Journal of Chemical Physics 48 (5) (1968), pp. 2215-2231.
  39. [200] F. Steiner, S. Foster, A. Losquin, J. Labram, T. D. Anthopoulos, J. M. Frost, and J. Nelson. “Distinguishing the Influence of Structural and Energetic Disorder on Electron Transport in Fullerene Multi-Adducts”. Materials Horizons 2 (1) (2014), pp. 113-119.
  40. [111] A. Ajayaghosh. “Donor-Acceptor Type Low Band Gap Polymers: Polysquaraines and Related Systems”. Chemical Society Reviews 32 (4) (2003), pp. 181-191.
  41. [170] J. Arago´ and A. Troisi. “Dynamics of the excitonic coupling in organic crystals”. Physical Review Letters 114 (2) (2015), p. 026402.
  42. [189] U. Lemmer. “Dynamik optischer Anregungen in π-konugierten Polymeren”. PhD thesis. Philipps-Universit¨at Marburg, 1995.
  43. [158] A. R. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend. “Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy”. Nano Letters 10 (3) (2010), pp. 923-930.
  44. [159] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan. “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”. Nature Materials 6 (7) (2007), pp. 497-500.
  45. [203] D. W. Gehrig, I. A. Howard, V. Kamm, H. Mangold, and D. Neher. “EfficiencyLimiting Processes in Low-Bandgap Polymer:Perylene Diimide Photovoltaic Blends”. The Journal of Physical Chemistry C 118 (35) (2014), pp. 20077- 20085.
  46. [27] M. C. Scharber and N. S. Sariciftci. “Efficiency of bulk-heterojunction organic solar cells”. Progress in Polymer Science 38 (12) (2013), pp. 1929-1940.
  47. [198] M. Wiemer, M. Koch, U. Lemmer, A. B. Pevtsov, and S. D. Baranovskii. “Efficiency of exciton dissociation at internal organic interfaces beyond harmonic approximation”. Organic Electronics 15 (10) (2014), pp. 2461-2467.
  48. [86] K. Vandewal, S. Albrecht, E. T. Hoke, K. R. Graham, J. Widmer, J. D. Douglas, M. Schubert, W. R. Mateker, J. T. Bloking, G. F. Burkhard, A. Sellinger, J. M. J. Fr´echet, A. Amassian, M. K. Riede, M. D. McGehee, D. Neher, and A. Salleo. “Efficient charge generation by relaxed charge-transfer states at organic interfaces”. Nature Materials 13 (1) (2014), pp. 63-68.
  49. [182] T. Basel, U. Huynh, T. Zheng, T. Xu, L. Yu, and Z. V. Vardeny. “Optical, Electrical, and Magnetic Studies of Organic Solar Cells Based on Low Bandgap Copolymer with Spin 12 Radical Additives”. Advanced Functional Materials 25 (12) (2015), pp. 1895-1902.
  50. [32] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid. “Electrical conductivity in doped polyacetylene”. Physical Review Letters 39 (17) (1977), pp. 1098-1101.
  51. [92] C. L. Braun. “Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production”. The Journal of Chemical Physics 80 (9) (1984), pp. 4157-4161.
  52. M. Sano, M. Pope, and H. Kallmann. “Electroluminescence and Band Gap in Anthracene”. The Journal of Chemical Physics 43 (8) (1965), pp. 2920-2921.
  53. W. Rieß, S. Karg, V. Dyakonov, M. Meier, and M. Schwoerer. “Electroluminescence and photovoltaic effect in PPV Schottky diodes”. Journal of Luminescence 60-61 (1994), pp. 902-905.
  54. [174] K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J. Manca, and O. Ingana¨s. “Electroluminescence from charge transfer states in polymer solar cells”. Journal of the American Chemical Society 131 (33) (2009), pp. 11819-11824.
  55. [45] M. Pope and C. E. Swenberg. Electronic Processes in Organic Crystals. Oxford, 1982. isbn: 0-19-851334-8.
  56. [186] V. D. Mihailetchi, K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk. “Electron transport in a methanofullerene”. Advanced Functional Materials 13 (1) (2003), pp. 43-46.
  57. [54] J. Franck. “Elementary processes of photochemical reactions”. Transactions of the Faraday Society 21 (1925), pp. 536-542.
  58. [197] G. D'Avino, S. Mothy, L. Muccioli, C. Zannoni, L. Wang, J. Cornil, D. Beljonne, and F. Castet. “Energetics of electron-hole separation at P3HT/PCBM heterojunctions”. The Journal of Physical Chemistry C 117 (25) (2013), pp. 12981- 12990.
  59. [75] C. Deibel, D. Mack, J. Gorenflot, A. Scho¨ll, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov. “Energetics of excited states in the conjugated polymer poly(3- hexylthiophene)”. Physical Review B 81 (8) (2010), p. 085202.
  60. [130] T. Offermans, P. A. van Hal, S. C. J. Meskers, M. M. Koetse, and R. A. J. Janssen. “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV”. Physical Review B 72 (4) (2005), p. 045213.
  61. [80] W. J. D. Beenken and T. Pullerits. “Excitonic coupling in polythiophenes: Comparison of different calculation methods”. The Journal of Chemical Physics 120 (5) (2004), p. 2490.
  62. [141] C. Gourdon and P. Lavallard. “Exciton transfer between localized states in CdS1−xSex alloys”. Physica Status Solidi B 153 (2) (1989), pp. 641-652.
  63. [35] U. Rauscher, H. Ba¨ssler, D. D. C. Bradley, and M. Hennecke. “Exciton versus band description of the absorption and luminescence spectra in poly(pphenylenevinylene)”. Physical Review B 42 (16) (1990), pp. 9830-9836.
  64. [88] [91] M. D. Tabak and P. J. Warter. “Field-Controlled Photogeneration and FreeCarrier Transport in Amorphous Selenium Films”. Physical Review 173 (3) (1968), pp. 899-907.
  65. [167] E. Cohen and M. D. Sturge. “Fluorescence line narrowing, localized exciton states, and spectral diffusion in the mixed semiconductor CdSxSe1−x”. Physical Review B 25 (6) (1982), pp. 3828-3840.
  66. W. Osikowicz, M. P. De Jong, and W. R. Salaneck. “Formation of the interfacial dipole at organic-organic interfaces: C 60/polymer interfaces”. Advanced Materials 19 (23) (2007), pp. 4213-4217.
  67. [62] T. Fo¨rster. “Zwischenmolekulare Energiewanderung und Fluoreszenz”. Annalen der Physik 6 (2) (1948), pp. 55-75.
  68. [125] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu. “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %”. Advanced Materials 22 (20) (2010), E135-E138.
  69. [132] F. C. Jamieson, E. B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, and J. R. Durrant. “Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells”. Chemical Science 3 (2) (2012), pp. 485-492.
  70. [136] J. Zhao, Y. Li, H. Lin, Y. Liu, K. Jiang, C. Mu, T. Ma, J. Y. L. Lai, H. Hu, D. Yu, and H. Yan. “High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor”. Energy and Environmental Science 8 (2) (2015), pp. 520-525.
  71. [152] G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf, D. Brida, G. Cerullo, and G. Lanzani. “Hot exciton dissociation in polymer solar cells”. Nature Materials 12 (1) (2013), pp. 29-33.
  72. [77] B. Yang, Y. Yi, C.-r. Zhang, S. G. Aziz, V. Coropceanu, and J.-L. Br´edas. “Impact of Electron Delocalization on the Nature of the Charge- Transfer States in Model Pentacene/C60 Interfaces: A Density Functional Theory Study”. The Journal of Physical Chemistry C 118 (48) (2014), pp. 27648-27656.
  73. [95] A. Miller and E. Abrahams. “Impurity Conduction at Low Concentrations”. Physical Review 120 (3) (1960), pp. 745-755.
  74. [181] F. Piersimoni, S. Chambon, K. Vandewal, R. Mens, T. Boonen, A. Gadisa, M. Izquierdo, S. Filippone, B. Ruttens, J. D'haen, N. Martin, L. Lutsen, D. Vanderzande, P. Adriaensens, and J. V. Manca. “Influence of fullerene ordering on the energy of the charge-transfer state and open-circuit voltage in polymer:fullerene solar cells”. The Journal of Physical Chemistry C 115 (21) (2011), pp. 10873-10880.
  75. [94] L. Onsager. “Initial Recombination of Ions”. Physical Review 54 (8) (1938), pp. 554-557.
  76. [196] L. G. Kaake, P. F. Barbara, and X. Y. Zhu. “Intrinsic charge trapping in organic and polymeric semiconductors: A physical chemistry perspective”. The Journal of Physical Chemistry Letters 1 (3) (2010), pp. 628-635.
  77. [38] S. Barth and H. Ba¨ssler. “Intrinsic Photoconduction in PPV-Type Conjugated Polymers”. Physical Review Letters 79 (22) (1997), pp. 4445-4448.
  78. [28] A. K¨ohler and H. Ba¨ssler. Electronic Processes in Organic Semiconductors. WILEY-VCH, 2015. isbn: 978-3-527-33292-2.
  79. [34] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes. “Light-emitting diodes based on conjugated polymers”. Nature 347 (6293) (1990), pp. 539-541.
  80. [194] L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. M. Blom. “Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells”. Applied Physics Letters 86 (12) (2005), p. 123509.
  81. [149] J. G. Mu¨ller, U. Lemmer, G Raschke, M Anni, U. Scherf, J. M. Lupton, and J Feldmann. “Linewidth-limited energy transfer in single conjugated polymer molecules”. Physical Review Letters 91 (26) (2003), p. 267403.
  82. [148] D. Ouadjaout and Y. Marfaing. “Localized excitons in II-VI semiconductor alloys: Density-of-states model and photoluminescence line-shape analysis”. Physical Review B 41 (17) (1990), pp. 96-105.
  83. [115] N. Kleinhenz, L. Yang, H. Zhou, S. C. Price, and W. You. “Low-band-gap polymers that utilize quinoid resonance structure stabilization by thienothiophene: Fine-tuning of HOMO level”. Macromolecules 44 (4) (2011), pp. 872-877.
  84. [171] D. Jarzab, F. Cordella, J. Gao, M. Scharber, H.-J. Egelhaaf, and M. A. Loi. “Low-Temperature Behaviour of Charge Transfer Excitons in Narrow-Bandgap Polymer-Based Bulk Heterojunctions”. Advanced Energy Materials 1 (4) (2011), pp. 604-609.
  85. [51] S. Few, J. M. Frost, and J. Nelson. “Models of charge pair generation in organic solar cells”. Physical Chemistry Chemical Physics 17 (4) (2015), pp. 2311-2325.
  86. [144] M. R. Hammond, R. J. Kline, A. A. Herzing, L. J. Richter, D. S. Germack, H.-w. Ro, C. L. Soles, D. A. Fischer, T. Xu, L. Yu, M. F. Toney, and D. M. Delongchamp. “Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells”. ACS Nano 5 (10) (2011), pp. 8248-8257.
  87. [207] C. Groves, R. A. Marsh, and N. C. Greenham. “Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices”. The Journal of Chemical Physics 129 (11) (2008), p. 114903.
  88. M. L. Jones, B. Chakrabarti, and C. Groves. “Monte Carlo simulation of geminate pair recombination dynamics in organic photovoltaic devices: Multi-exponential, field-dependent kinetics and its interpretation”. The Journal of Physical Chemistry C 118 (1) (2014), pp. 85-91.
  89. [37] M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. Mahrt, H. Kurz, H. Ba¨ssler, E. Go¨bel, and P. Thomas. “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene)”. Physical Review B 54 (8) (1996), pp. 5536-5544.
  90. [168] P. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulovi´c, T. Van Voorhis, and M. A. Baldo. “Nanoscale Transport of Charge Transfer States in Organic Donor-Acceptor Blends”. Nature Materials 14 (11) (2015), pp. 1130-1134.
  91. [129] S. Sapp and S. Luebben. “New Conducting and Semiconducting Polymers for Organic Photovoltaics”. MRS Proceedings 1270 (2007), pp. 1-7.
  92. [61] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle. “Lessons from nature about solar light harvesting”. Nature Chemistry 3 (10) (2011), pp. 763-774.
  93. [90] J. Frenkel. “On Pre-Breakdown Phenomena in Insulators and Electronic SemiConductors”. Physical Review 54 (8) (1938), pp. 647-648.
  94. [175] K. Tvingstedt, K. Vandewal, F. Zhang, and O. Ingana¨s. “On the dissociation efficiency of charge transfer excitons and Frenkel excitons in organic solar cells: A luminescence quenching study”. The Journal of Physical Chemistry C 114 (49) (2010), pp. 21824-21832.
  95. [96] M. Wiemer, A. V. Nenashev, F. Jansson, and S. D. Baranovskii. “On the efficiency of exciton dissociation at the interface between a conjugated polymer and an electron acceptor”. Applied Physics Letters 99 (1) (2011), p. 013302.
  96. [162] S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J. C. Blakesley, I. Dumsch, S. Allard, K. Fostiropoulos, U. Scherf, and D. Neher. “On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent Additives”. The Journal of Physical Chemistry Letters 3 (5) (2012), pp. 640-645.
  97. [105] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Ingana¨s, and J. V. Manca. “On the origin of the open-circuit voltage of polymer/fullerene solar cells”. Nature Materials 8 (11) (2009), pp. 904-909.
  98. [82] R. A. Marcus. “On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I”. The Journal of Chemical Physics 24 (5) (1956), pp. 966- 978.
  99. [58] J. Frenkel. “On the transformation of light into heat in solids”. Physical Review 37 (1) (1931), pp. 17-44.
  100. [73] J. Gierschner, J. Cornil, and H.-J. Egelhaaf. “Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory”. Advanced Materials 19 (2) (2007), pp. 173-191.
  101. [33] C. W. Tang and S. A. VanSlyke. “Organic electroluminescent diodes”. Applied Physics Letters 51 (12) (1987), pp. 913-915.
  102. [47] M. Schwoerer and H. C. Wolf. Organic Molecular Solids. WILEY-VCH, 2007.
  103. [100] H. Hoppe and N. S. Sariciftci. “Organic solar cells: An overview”. Journal of Materials Research 19 (7) (2011), pp. 1924-1945.
  104. [40] G. A. Chamberlain. “Organic solar cells: A review”. Solar Cells 8 (1) (1983), pp. 47-83.
  105. [191] C. Deibel, T. Strobel, and V. Dyakonov. “Origin of the Efficient Polaron-Pair Dissociation in Polymer-Fullerene Blends”. Physical Review Letters 103 (3) (2009), p. 036402.
  106. [187] L. J. A. Koster, S. E. Shaheen, and J. C. Hummelen. “Pathways to a new efficiency regime for organic solar cells”. Advanced Energy Materials 2 (10) (2012), pp. 1246-1253.
  107. [166] J. Razzell-Hollis, J. Wade, W. C. Tsoi, Y. Soon, J. Durrant, and J.-S. Kim. “Photochemical stability of high efficiency PTB7:PC70BM solar cell blends”. Journal of Materials Chemistry A 2 (47) (2014), pp. 20189-20195.
  108. [106] O. J. Korovyanko, R. O¨ sterbacka, X. M. Jiang, Z. V. Vardeny, and R. A. J. Janssen. “Photoexcitation dynamics in regioregular and regiorandom polythiophene films”. Physical Review B 64 (6) (2001), p. 235122.
  109. [164] J. Piris, T. E. Dykstra, A. A. Bakulin, P. H. M. van Loosdrecht, W. Knulst, M. T. Trinh, J. M. Schins, and L. D. A. Siebbeles. “Photogeneration and Ultrafast Dynamics of Excitons and Charges in P3HT/PCBM Blends”. The Journal of Physical Chemistry C 113 (32) (2009), pp. 14500-14506.
  110. [42] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl. “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.” Science 258 (1992), pp. 1474-1476.
  111. [173] R. Westphaling, T. Breitkopf, S. Bauer, and C. Klingshirn. “Photoluminescence quantum efficiency and dynamics in ZnSe1−xTex and CdS1−xSex mixed crystals”. Journal of Luminescence 72-74 (1997), pp. 980-982.
  112. [151] J. M. Szarko, B. S. Rolczynski, S. J. Lou, T. Xu, J. Strzalka, T. J. Marks, L. Yu, and L. X. Chen. “Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer”. Advanced Functional Materials 24 (1) (2013), pp. 10-26.
  113. [113] F. Wudl, M. Kobayashi, and A. J. Heeger. “Poly(isothianaphthene)”. The Journal of Organic Chemistry 49 (18) (1984), pp. 3382-3384.
  114. [44] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”. Science 270 (5243) (1995), pp. 1789-1791.
  115. [131] K. Tajima, Y. Suzuki, and K. Hashimoto. “Polymer Photovoltaic Devices using Fully Regioregular Poly[(2-methoxy-5-(3',7'-dimethyloctyloxy))-1,4-phenylenevinylene]”. The Journal of Physical Chemistry C Letters 112 (23) (2008), pp. 8507- 8510.
  116. [128] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and efficiency”. Nature Photonics 3 (2009), pp. 649-653.
  117. [204] [205] M. Koehler, M. C. Santos, and M. G. E. Da Luz. “Positional disorder enhancement of exciton dissociation at donor/acceptor interface”. Journal of Applied Physics 99 (5) (2006), p. 053702.
  118. [161] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger. “Processing additives for improved efficiency from bulk heterojunction solar cells”. Journal of the American Chemical Society 130 (11) (2008), pp. 3619-3623.
  119. [70] R. E. Peierls. Quantum theory of solids. Oxford, 1955. isbn: 9780198507819.
  120. [30] [31] W. Helfrich and W. G. Schneider. “Recombination Radiation in Anthracene Crystals”. Physical Review Letters 14 (7) (1965), pp. 229-231.
  121. [60] R. R. Lunt, J. B. Benziger, and S. R. Forrest. “Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors”. Advanced Materials 22 (11) (2010), pp. 1233-1236.
  122. [68] J. Torras, J. Casanovas, and C. Alema´n. “Reviewing extrapolation procedures of the electronic properties on the π-conjugated polymer limit”. The Journal of Physical Chemistry A 116 (28) (2012), pp. 7571-7583.
  123. [50] C. Deibel, T. Strobel, and V. Dyakonov. “Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells”. Advanced Materials 22 (37) (2010), pp. 4097-4111.
  124. [135] L. Ye, W. Jiang, W. Zhao, S. Zhang, D. Qian, Z. Wang, and J. Hou. “Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Non-fullerene Acceptor-based Solar Cells”. Small 10 (22) (2014), pp. 4658-4663.
  125. [43] N Sariciftci, D Braun, C Zhang, V Srdanov, G Stucky, A Heeger, and F Wudl. “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells”. Applied Physics Letters 62 (1993), p. 585.
  126. [206] P. Peumans and S. R. Forrest. “Separation of geminate charge-pairs at donoracceptor interfaces in disordered solids”. Chemical Physics Letters 398 (1-3) (2004), pp. 27-31.
  127. [146] A. Merdasa, A. J. Jim´enez, R. Camacho, M. Meyer, F. Wu¨rthner, and I. G. Scheblykin. “Single L´evy states - disorder induced energy funnels in molecular aggregates”. Nano Letters 14 (12) (2014), pp. 6774-6781.
  128. [39] H. Ba¨ssler and B. Schweitzer. “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers”. Accounts of Chemical Research 32 (2) (1999), pp. 173-182.
  129. [112] G. Brocks and A. Tol. “Small Band Gap Semiconducting Polymers Made from Dye Molecules:Polysquaraines”. The Journal of Physical Chemistry 100 (5) (1996), pp. 1838-1846.
  130. [26] N. Armaroli and V. Balzani. “Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition”. Chemistry A - European Journal 22 (1) (2016), pp. 32-57.
  131. W. P. Su, J. R. Schrieffer, and A. J. Heeger. “Soliton excitations in polyacetylene”. Physical Review B 22 (4) (1980), pp. 2099-2111.
  132. [66] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su. “Solitons in conducting polymers”. Reviews of Modern Physics 60 (3) (1988), pp. 781-850.
  133. [64] [65] [67] W. P. Su, J. R. Schrieffer, and A. J. Heeger. “Solitons in polyacetylene”. Physical Review Letters 42 (25) (1979), pp. 1698-1701.
  134. [140] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang. “”Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes”. Advanced Functional Materials 17 (10) (2007), pp. 1636-1644.
  135. [143] T. Niebling, O. Rubel, W. Heimbrodt, W. Stolz, S. D. Baranovskii, P. J. Klar, and J. F. Geisz. “Spectral and time dependences of the energy transfer of bound optical excitations in GaP(N)”. Journal of Physics: Condensed Matter 20 (1) (2008), p. 015217.
  136. [142] O. Rubel, W. Stolz, and S. D. Baranovskii. “Spectral dependence of the photoluminescence decay in disordered semiconductors”. Applied Physics Letters 91 (2) (2007), p. 021903.
  137. [108] Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”. Chemical Reviews 109 (11) (2009), pp. 5868- 5923.
  138. [74] J. Roncali. “Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems”. Chemical Reviews 97 (1) (1997), pp. 173-206.
  139. [83] J. Jortner. “Temperature dependent activation energy for electron transfer between biological molecules”. The Journal of Chemical Physics 64 (12) (1976), p. 4860.
  140. [69] H. C. Longuet-Higgins and L. Salem. “The alternation of bond lengths in long conjugated chain molecules”. Proceedings of the Royal Society A 251 (1265) (1959), pp. 172-185.
  141. [71] G. N. Lewis and M. Calvin. “The Color of Organic Substances”. Chemical Reviews 25 (2) (1939), pp. 273-328.
  142. [163] A. Zusan, B. Gieseking, M. Zerson, V. Dyakonov, R. Magerle, and C. Deibel. “The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C”. Scientific Reports 5 (8268) (2015), pp. 1-8.
  143. [201] F. Gao, S. Himmelberger, M. Andersson, D. Hanifi, Y. Xia, S. Zhang, J. Wang, J. Hou, A. Salleo, and O. Ingana¨s. “The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTT-C-T:PC71BM”. Advanced Materials 27 (26) (2015), pp. 3868-3873.
  144. [202] J. Kniepert, I. Lange, J. Heidbrink, J. Kurpiers, T. J. K. Brenner, L. J. A. Koster, and D. Neher. “The Effect of Solvent Additive on Generation, Recombination and Extraction in PTB7:PCBM Solar Cells: A Conclusive Experimental and Numerical Simulation Study”. The Journal of Physical Chemistry C 119 (15) (2015), pp. 8310-8320.
  145. [145] S. D. Baranovskii. “Theoretical description of charge transport in disordered organic semiconductors”. Physica Status Solidi (B) 251 (3) (2014), pp. 487- 525.
  146. [59] A. S. Davydov. “Theory of absorption spectra of molecular crystals”. Ukrainian Journal of Physics 53 (2) (2008), pp. 210-218. Translated and reprinted from Zh. Eksp. Teor. Fiz. 18 (2), pp. 210218 (1948).
  147. [98] A. Nenashev, S. Baranovskii, M. Wiemer, F. Jansson, R. O¨ sterbacka, A. Dvurechenskii, and F. Gebhard. “Theory of exciton dissociation at the interface between a conjugated polymer and an electron acceptor”. Physical Review B 84 (3) (2011), p. 035210.
  148. [24] J. Nelson. The Physics of Solar Cells. Imperial College Press, 2003. isbn: 1- 86094-340-3.
  149. [147] J. Orenstein and M. A. Kastner. “Thermalization and recombination in amorphous semiconductors”. Solid State Communications 40 (1) (1981), pp. 85-89.
  150. [183] A. Rao, P. C. Y. Chow, S. G´elinas, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.- Y. Jen, D. S. Ginger, and R. H. Friend. “The role of spin in the kinetic control of recombination in organic photovoltaics”. Nature 500 (7463) (2013), pp. 435- 439.
  151. Walker. “Time-Resolved Excitonic Luminescence Processes in Poly(phenylenevinylene)”. Journal of the Physical Society of Japan 58 (8) (1989), pp. 2976- 2987.
  152. [138] A. A. Chernikov. “Time-Resolved Photoluminescence Spectroscopy of Semiconductors for Optical Applications Beyond the Visible Spectral Range”. PhD thesis. Philipps-Universita¨t Marburg, 2011.
  153. [123] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletˆete, G. Durocher, Y. Tao, and M. Leclerc. “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells”. Journal of the American Chemical Society 130 (2) (2008), pp. 732-742.
  154. [107] H. Ohkita and S. Ito. “Transient absorption spectroscopy of polymer-based thinfilm solar cells”. Polymer 52 (20) (2011), pp. 4397-4417.
  155. [99] C. W. Tang. “Two-layer organic photovoltaic cell”. Applied Physics Letters 48 (2) (1986), pp. 183-185.
  156. [72] W. Kuhn. “ U¨ber das Absorptionsspektrum der Polyene”. Helvetica Chimica Acta 31 (6) (1948), pp. 1780-1799.
  157. [84] H. Tamura and I. Burghardt. “Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation”. Journal of the American Chemical Society 135 (44) (2013), pp. 16364- 16367.
  158. [176] I.-W. Hwang, C. Soci, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, and A. Heeger. “Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material”. Advanced Materials 19 (17) (2007), pp. 2307-2312.
  159. [177] F. Etzold, I. A. Howard, R. Mauer, M. Meister, T.-D. Kim, K.-S. Lee, N. S. Baek, and F. Laquai. “Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.” Journal of the American Chemical Society 133 (24) (2011), pp. 9469-9479.
  160. [172] S. Cook, R. Katoh, and A. Furube. “Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM”. The Journal of Physical Chemistry C 113 (6) (2009), pp. 2547-2552.
  161. [85] B. M. Savoie, A. Rao, A. A. Bakulin, S. Gelinas, B. Movaghar, R. H. Friend, T. J. Marks, and M. A. Ratner. “Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge”. Journal of the American Chemical Society 136 (7) (2014), pp. 2876-2884.
  162. [165] Website of Sigma Aldrich. 2016. url: http : / / www . sigmaaldrich . com / catalog/product/aldrich/684465?lang=de\&region=DE.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten