Publikationsserver der Universitätsbibliothek Marburg

Titel:Nanojoule Adsorption Calorimetry. Design, Construction, Novel Evaluation Approach, Software Development, Characterization, and Exemplary Measurements
Autor:Drescher, Hans-Jörg
Weitere Beteiligte: Gottfried, J. Michael (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0474
URN: urn:nbn:de:hebis:04-z2016-04747
DOI: https://doi.org/10.17192/z2016.0474
DDC: Chemie
Publikationsdatum:2016-08-24
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Messsystem, Grenzfläche, Adsorption, Adsorptionswärme, Kalorimeter, Nanojoule Adsorption Calorimetry

Summary:
The interaction of single molecules with surfaces as well as the interaction between surfaces, i.e., interfaces, are often of great interest and thus a vast field of applied sciences arises therefrom. Most ultra high vacuum based surface science techniques are only able to deliver information about an already formed interface. The desire for knowledge of the energetics describing the processes during the formation of such a contact layer motivates the usage of nanojoule adsorption calorimetry. This work presents the construction of the experimental setup necessary to study the coverage dependent heat of adsorption. The setup is optimized for investigations involving the adsorption of metal atoms on organic thin films and of large organic molecules on surfaces of single crystalline metals. The software developed for this work and used for data treatment is also covered by this thesis. In this respect, the user interface as well as the program code processing the data are both well discussed. The characterization of the components involved in calorimetric experiments is presented in detail later in this work. Finally, selected experiments involving the adsorption of magnesium, zinc, copper, and calcium on the pristine and cleaned detector surface as well as on 3,4,9,10-perylene-tetracarboxylic dianhydride, tetraphenylporphyrin, alpha-sexithiophene, and poly(3-hexylthiophene) are exemplarily discussed. This paper is completed by design drawings of the constructed elements for this work, the source code of the data treatment program developed for this work, an overview of the investigated systems, and the parameters used to operate the scientific equipment. Considering all individual aspects presented in this dissertation conjoined, the scientific framework necessary to study coverage dependent heats of adsorption precisely is established.

Zusammenfassung:
Da sowohl die Wechselwirkung von einzelnen Molekülen mit Oberflächen als auch die Wechselwirkung zwischen Oberflächen, also Grenzschichten, oft von großem Interesse sind, eröffnet sich daraus ein weites Feld von angewandten Wissenschaften. Die meisten Methoden zur Untersuchung von Oberflächen unter Ultrahochvakuumbedingungen können lediglich Informationen über bereits gebildete Grenzschichten liefern. Das Streben nach Erkenntnissen über die Energetik, welche den Bildungsprozess einer solchen Kontaktfläche beschreibt, motiviert die Verwendung der Nanojoule-Adsorptions-Kalorimetrie als Methode. Die vorliegende Arbeit stellt die Konstruktion des experimentellen Aufbaus vor, der notwendig ist, um bedeckungsabhängige Adsorptionswärmen zu bestimmen. Diese Anlage ist für die Erforschung von Systemen optimiert, bei denen Metallatome auf organischen Dünnschichten, beziehungsweise große organische Moleküle auf Einkristalloberflächen adsorbiert werden. Die für die Datenauswertung dieser Arbeit entwickelten Computerprogramme werden erläutert. Im Zuge dessen erfolgt auch eine ausführliche Erörterung sowohl der Benutzeroberfläche als auch des eigentlichen Programms. Im Folgenden wird die Charakterisierung aller in ein Kalorimetrie-Experiment involvierten Komponenten eingehend dargelegt. Zum Abschluss sind einige ausgewählte Experimente exemplarisch diskutiert. Diese Beispiele umfassen die Adsorption von Magnesium, Zink, Kupfer und Calcium auf der ursprünglichen und gesäuberten Detektoroberfläche, sowie auf Dünnschichten aus 3,4,9,10-Perylentetracarbonsäuredianhydrid, Tetraphenylporphyrin, alpha-Sexithiophen und Poly(3-Hexylthiophen). Vervollständigt wird diese Abhandlung sowohl durch technische Zeichnungen der für diese Arbeit konstruierten Bauteile, den für diese Arbeit entwickelten Quelltext des Auswertungsprogramms, als auch durch eine Übersicht über die untersuchten Systeme und die Betriebsparameter für die Laborausrüstung. Aus der zusammenfassenden Betrachtung der einzelnen in dieser Dissertation präsentierten Aspekte, lässt sich feststellen, dass alle aus wissenschaftlicher Sicht notwendigen Rahmenbedingungen geschaffen wurden, um bedeckungsabhängige Adsorptionswärmen präzise bestimmen zu können.

Bibliographie / References

  1. [132] Zhang, Q.; Bharti, V.; and Kavarnos, G. Encyclopedia of Smart Materials, Chapter Poly(Vinylidene Fluoride) (PVDF) and Its Copolymers. John Wiley and Sons, Inc., 2002, pp. 807-825. doi:10.1002/0471216275.esm063.
  2. [52] Peter, M.; Camacho, J. M. F.; Adamovski, S.; Ono, L. K.; Dostert, K.-H.; O'Brien, C. P.; Cuenya, B. R.; Schauermann, S.; and Freund, H.-J. Trends in the Binding Strength of Surface Species on Nanoparticles: How Does the Adsorption Energy Scale with the Particle Size? Angewandte Chemie, International Edition, 2013, 52 (19), 5175. doi:10.1002/anie.201209476.
  3. [216] Massey, S.; Cloutier, P.; Bazin, M.; Sanche, L.; and Roy, D. Chemical Modification of Polystyrene by Low-Energy (<100 eV) Electron Irradiation Studied by Mass Spectrometry. Journal of Applied Polymer Science, 2008, 108 (5), 3163. doi:10.1002/app.27892.
  4. [91] Amende, M.; Schernich, S.; Sobota, M.; Nikiforidis, I.; Hieringer, W.; Assenbaum, D.; Gleichweit, C.; Drescher, H.-J.; Papp, C.; Steinrück, H.-P.; Görling, A.; Wasserscheid, P.; Laurin, M.; and Libuda, J. Dehydrogenation Mechanism of Liquid Organic Hydrogen Carriers: Dodecahydro-N-Ethylcarbazole on Pd(111). Chemistry - A European Journal, 2013, 19 (33), 10854. doi:10.1002/chem.201301323.
  5. [214] Geyter, N. D.; Morent, R.; and Leys, C. Surface Characterization of Plasma-Modified Polyethylene by Contact Angle Experiments and ATR-FTIR Spectroscopy. Surface and Interface Analysis, 2007, 40 (3-4), 608. doi:10.1002/sia.2611.
  6. [112] Schauermann, S.; Silbaugh, T. L.; and Campbell, C. T. Single-Crystal Adsorption Calorimetry on Well-Defined Surfaces: From Single Crystals to Supported Nanoparticles. The Chemical Record, 2014, 14, 759. doi:10.1002/tcr.201402022.
  7. [17] Larsen, J. H.; Starr, D. E.; and Campbell, C. T. Enthalpies of Adsorption of Metal Atoms on Single-Crystalline Surfaces by Microcalorimetry. The Journal of Chemical Thermodynamics, 2001, 33 (3), 333. doi:10.1006/jcht.2000.0747.
  8. [240] Kersey, J. B. and Jerner, R. C. The Effect of Firing Temperature on Properties Natural Steatite and Pyrophyllite. Journal of Materials Science, 1972, 7 (6), 621. doi:10.1007/BF00549373.
  9. [141] Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung Dünner Schichten und zur Mikrowägung. Zeitschrift für Physik, 1959, 155, 206. doi:10.1007/BF01337937.
  10. [116] Borroni-Bird, C. E.; Al-Sarraf, N.; Andersoon, S.; and King, D. Single Crystal Adsorption Microcalorimetry. Chemical Physics Letters, 1991, 183 (6), 516. doi:10.1016/0009-2614(91)80168-W.
  11. [4] Černý, S.; Smutek, M.; Buzek, F.; and Curřínová, A. Calorimetric Studies of Hydrocarbon Adsorption on Metal Films: I. Cyclopropane on Platinum and Molybdenum. Journal of Catalysis, 1977, 47 (2), 159. doi:10.1016/0021-9517(77)90163-4.
  12. [3] Smutek, M. and Černý, S. Calorimetric Studies of Hydrocarbon Adsorption on Metal Films: III. Methane, Ethane, and Propane on Molybdenum. Journal of Catalysis, 1977, 47 (2), 179. doi:10.1016/0021-9517(77)90165-8.
  13. [6] Pálfi, S.; Lisowski, W.; Smutek, M.; and Černý, S. Calorimetric Studies of Hydrocarbon Adsorption on Metal Films: V. Hydrocarbons on Platinum. Journal of Catalysis, 1984, 88 (2), 300. doi:10.1016/0021-9517(84)90006-X.
  14. [146] King, D. A. and Wells, M. G. Molecular Beam Investigation Of Adsorption Kinetics on Bulk Metal Targets: Nitrogen on Tungsten. Surface Science, 1972, 29 (2), 454. doi:10.1016/0039-6028(72)90232-4.
  15. [104] King, D. A. Thermal Desorption from Metal Surfaces: A Review. Surface Science, 1975, 47 (1), 384. doi:10.1016/0039-6028(75)90302-7.
  16. [103] Habenschaden, E. and Küppers, J. Evaluation of Flash Desorption Spectra. Surface Science, 1984, 138 (1), L147. doi:10.1016/0039-6028(84)90488-6.
  17. [147] Pauls, S. W. and Campbell, C. T. Magic-Angle Thermal Desorption Mass Spectroscopy. Surface Science, 1990, 226 (3), 250. doi:10.1016/0039-6028(90)90490-Y.
  18. [102] de Jong, A. and Niemantsverdriet, J. Thermal Desorption Analysis: Comparative Test of Ten Commonly Applied Procedures. Surface Science, 1990, 233 (2), 355. doi:10.1016/0039-6028(90)90649-S.
  19. [13] Dixon-Warren, S. J.; Kovář, M.; Wartnaby, C. E.; and King, D. A. Pyroelectric Single Crystal Adsorption Microcalorimetry at Low Temperatures: Oxygen on Ni{100}. Surface Science, 1994, 307-309, 16. doi:10.1016/0039-6028(94)90363-8.
  20. [117] Dvořák, L.; Kovář, M.; and Černý, S. A new Approach to Adsorption Microcalorimetry Based on a LiTaO3 Pyroelectric Temperature Sensor and a Pulsed Molecular Beam. Thermochimica Acta, 1994, 245, 163. doi:10.1016/0040-6031(94)85076-3.
  21. [100] Pétermann, L. A. Thermal Desorption Kinetics of Chemisorbed Gases. Progress in Surface Science, 1972, 3 (1), 1. doi:10.1016/0079-6816(72)90005-6.
  22. [123] Comsa, G. and David, R. Dynamical Parameters of Desorbing Molecules. Surface Science Reports, 1985, 5 (4), 145. doi:10.1016/0167-5729(85)90009-3.
  23. [8] Bastel, Z. and Černý, S. Calorimetric and XPS Study of the Effect of Copper on the Sorption Properties of Dysprosium. Applied Surface Science, 1993, 68 (2), 275. doi:10.1016/0169-4332(93)90132-U.
  24. [118] Kovář, M.; Dvořák, L.; and Černý, S. Application of Pyroelectric Properties of LiTaO3 Single Crystal to Microcalorimetric Measurement of the Heat of Adsorption. Applied Surface Science, 1994, 74 (1), 51. doi:10.1016/0169-4332(94)90099-X.
  25. [78] Lachkar, A.; Selmani, A.; and Sacher, E. Metallization of Polythiophenes - II. Interaction of Vapor-Deposite Cr, V, and Ti with Poly(3-Hexylthiophene) (P3HT). Synthetic Metals, 1995, 72 (1), 73. doi:10.1016/0379-6779(94)02319-T.
  26. [75] Lazzaroni, R.; Lögdlund, M.; Calderone, A.; Brédas, J.; Dannetun, P.; Fauquet, C.; Fredriksson, C.; Stafström, S.; and Salaneck, W. Chemical and Electronic Aspects of Metal/Conjugated Polymer Interfaces - Implications for Electronic Devices. Synthetic Metals, 1995, 71 (1-3), 2159. doi:10.1016/0379-6779(94)03203-I.
  27. [54] Hon, S. S.; Richter, J.; and Stuckless, J. T. A Calorimetric Study of the Heat of Reaction of Calcium Atoms with the Vinylene Group of MEH-PPVh. Chemical Physics Letters, 2004, 385 (1-2), 92. doi:10.1016/j.cplett.2003.12.055.
  28. [109] Askalany, A. A. and Saha, B. B. Derivation of Isosteric Heat of Adsorption for Non-Ideal Gases. International Journal of Heat and Mass Transfer, 2015, 89, 186. doi:10.1016/j.ijheatmasstransfer.2015.05.018.
  29. [43] Silbaugh, T. L.; Karp, E. M.; and Campbell, C. T. Surface Kinetics and Energetics from Single Crystal Adsorption Calorimetry Lineshape Analysis: Methyl from Methyl Iodide on Pt(111). Journal of Catalysis, 2013, 308, 114. doi:10.1016/j.jcat.2013.05.030.
  30. [85] Salvan, G.; Paez, B. A.; Silaghi, S.; and Zahn, D. R. Deposition of Silver, Indium, and Magnesium onto Organic Semiconductor Layers: Reactivity, Indiffusion, and Metal Morphology. Microelectronic Engineering, 2005, 82 (3-4), 228. doi:10.1016/j.mee.2005.07.029.
  31. [73] Feng, X.; Zhao, W.; Ju, H.; Zhang, L.; Ye, Y.; Zhang, W.; and Zhu, J. Electronic Structures and Chemical Reactions at the Interface between Li and Regioregular Poly(3-Hexylthiophene). Organic Electronics, 2012, 13 (6), 1060. doi:10.1016/j.orgel.2012.02.007.
  32. [68] Braun, W.; Gavrila, G.; Gorgoi, M.; and Zahn, D. R. T. Influence of the Molecular Structure on the Interface Formation between Magnesium and Organic Semiconductors. Radiation Physics and Chemistry, 2006, 75 (11), 1869. doi:10.1016/j.radphyschem.2005.07.057.
  33. [145] Lu, F.; Lee, H.; and Lim, S. Quartz Crystal Microbalance with Rigid Mass Partially Attached on Electrode Surfaces. Sensors and Actuators A, 2004, 112, 203. doi:10.1016/j.sna.2004.01.018.
  34. [125] Diaz, S.; Zhu, J.; Shamir, N.; and Campbell, C. T. Pyroelectric Heat Detector for Measuring Adsorption Energies on Thicker Single Crystals. Sensors and Actuators B: Chemical, 2005, 107 (1), 454. doi:10.1016/j.snb.2004.11.037.
  35. [24] Zhu, J.; Diaz, S.; Heeb, L.; and Campbell, C. T. Adsorption Of Pb on NiAl(110): Energetics and Structure. Surface Science, 2005, 574 (1), 34. doi:10.1016/j.susc.2004.10.014.
  36. [55] Diaz, S.; Zhu, J.; Harris, J.; Goetsch, P.; Merte, L.; and Campbell, C. T. Heats of Adsorption of Pb on Pristine and Electron-Irradiated Poly(Methyl Methacrylate) by Microcalorimetry. Surface Science, 2005, 598 (1-3), 22. doi:10.1016/j.susc.2005.09.015.
  37. [28] Fiorin, V.; Borthwick, D.; and King, D. A. Microcalorimetry of O2 and NO on Flat and Stepped Platinum Surfaces. Surface Science, 2009, 603 (10-10), 1360. doi:10.1016/j.susc.2008.08.034.
  38. [35] Schießer, A.; Hörtz, P.; and Schäfer, R. Thermodynamics and Kinetics of CO and Benzene Adsorption on Pt(111) Studied with Pulsed Molecular Beams and Microcalorimetry. Surface Science, 2010, 604, 2098. doi:10.1016/j.susc.2010.09.001.
  39. [48] Hörtz, P.; Ruff, P.; and Schäfer, R. A Temperature Dependent Investigation of the Adsorption of CO on Pt(111) using Low-Temperature Single Crystal Adsorption Calorimetry. Surface Science, 2015, 639, 66. doi:10.1016/j.susc.2015.04.018.
  40. [80] Koprinarov, I.; Lippitz, A.; Friedrich, J.; Unger, W.; and Wöll, C. Surface Analysis of DC Oxygen Plasma Treated or Chromium Evaporated Poly(Ethylene Terephthalate) Foils by Soft X-Ray Absorption Spectroscopy (NEXAFS). Polymer, 1997, 38 (8), 2005. doi:10.1016/S0032-3861(96)00964-0.
  41. [211] Fahlman, M. and Salaneck, W. Surfaces and Interfaces in Polymer-Based Electronics. Surface Science, 2002, 500 (1-3), 904. doi:10.1016/S0039-6028(01)01554-0.
  42. [22] Starr, D. E.; Diaz, S. F.; Musgrove, J. E.; Ranne, J. T.; Bald, D. J.; Nelen, L.; Ihm, H.; and Campbell, C. T. Heat of Adsorption of Cu and Pb on Hydroxyl-Covered MgO(100). Surface Science, 2002, 515 (1), 13. doi:10.1016/S0039-6028(02)01915-5.
  43. [217] Zekonyte, J.; Erichsen, J.; Zaporojtchenko, V.; and Faupel, F. Mechanisms of Argon Ion-Beam Surface Modification of Polystyrene. Surface Science, 2003, 532-535, 1040. doi:10.1016/S0039-6028(03)00130-4.
  44. [96] Zhu, J.; Kinne, M.; Fuhrmann, T.; Denecke, R.; and Steinrück, H.-P. In situ High-Resolution XPS Studies on Adsorption of NO on Pt(111). Surface Science, 2003, 529 (3), 384. doi:10.1016/S0039-6028(03)00298-X.
  45. [7] Černý, S. and Pientka, Z. Heat of Interaction of Carbon Monoxide with Dysprosium. Surface Science, 1987, 191 (3), 449. doi:10.1016/S0039-6028(87)81189-5.
  46. [9] Černý, S. Adsorption Microcalorimetry in Surface Science Studies - Sixty Years of Its Development into a Modern Powerful Method. Surface Science Reports, 1996, 26 (1-2), 1. doi:10.1016/S0167-5729(96)00008-8.
  47. [124] Campbell, C. T. Ultrathin Metal Films And Particles on Oxide Surfaces: Structural, Electronic, and Chemisorptive Properties. Surface Science Reports, 1997, 27 (1-3), 1. doi:10.1016/S0167-5729(96)00011-8.
  48. [238] Stuckless, J. T.; Frei, N. A.; and Campbell, C. T. Pyroelectric Detector for SingleCrystal Adsorption Microcalorimetry: Analysis of Pulse Shape and Intensity. Sensors and Actuators B: Chemical, 2000, 62 (1), 13. doi:10.1016/S0925-4005(99)00371-8.
  49. [212] Salaneck, W.; Lögdlund, M.; Fahlman, M.; Greczynskia, G.; and Kugler, T. The Electronic Structure of Polymer-Metal Interfaces Studied by Ultraviolet Photoelectron Spectroscopy. Materials Science and Engineering: R: Reports, 2001, 34 (3), 121. doi:10.1016/S0927-796X(01)00036-5.
  50. [224] Amar, N.; Gould, R.; and Saleh, A. Structural and Electrical Properties of the α-form of Metal-Free Phthalocyanine (α-H2Pc) Semiconducting Thin Films. Current Applied Physics, 2002, 2 (6), 455. doi:10.1016/S1567-1739(02)00156-6.
  51. [225] Horowitz, G.; Bachet, B.; Yassar, A.; Lang, P.; Demanze, F.; Fave, J.-L.; and Garnier, F. Growth and Characterization of Sexithiophene Single Crystals. Chemistry of Materials, 1995, 7, 1337. doi:10.1021/cm00055a010.
  52. [95] Campbell, C. T. and Sellers, J. R. Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chemical Reviews, 2013, 113 (6), 4106. doi:10.1021/cr300329s.
  53. [62] Forrest, S. R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. Chemical Reviews, 1997, 97 (6), 1793. doi:10.1021/cr941014o.
  54. [11] Brown, W. A.; Kose, R.; and King, D. A. Femtomole Adsorption Calorimetry on Single-Crystal Surfaces. Chemical Reviews, 1998, 98 (2), 797. doi:10.1021/cr9700890.
  55. [171] Yoshida, T.; Tanaka, T.; Yoshida, H.; Funabiki, T.; and Yoshida, S. Study of Dehydration of Magnesium Hydroxide. The Journal of Physical Chemistry, 1995, 99, 10890. doi:10.1021/j100027a033.
  56. [21] Campbell, C. T. and Starr, D. E. Metal Adsorption and Adhesion Energies on MgO(100). Journal of the American Chemical Society, 2002, 124 (31), 9212. doi:10.1021/ja020146t.
  57. [53] Murdey, R. and Stuckless, J. T. Calorimetry of Polymer Metallization: Copper, Calcium, and Chromium on PMDA-ODA Polyimide. Journal of the American Chemical Society, 2003, 125 (13), 3995. doi:10.1021/ja028829w.
  58. [56] Zhu, J.; Goetsch, P.; Ruzycki, N.; and Campbell, C. T. Adsorption Energy, Growth Mode, and Sticking Probability of Ca on Poly(Methyl Methacrylate) Surfaces with and without Electron Damage. Journal of the American Chemical Society, 2007, 129, 6432. doi:10.1021/ja067437c.
  59. [200] Shubina, T. E.; Marbach, H.; Flechtner, K.; Kretschmann, A.; Jux, N.; Buchner, F.; Steinrück, H.-P.; Clark, T.; and Gottfried, J. M. Principle and Mechanism of Direct Porphyrin Metalation: Joint Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2007, 129 (30), 9476. doi:10.1021/ja072360t.
  60. [92] Starr, D. E. and Campbell, C. T. Large Entropy Difference between Terrace and Step Sites on Surfaces. Journal of the American Chemical Society, 2008, 130 (23), 7321. doi:10.1021/ja077540h.
  61. [27] Zhu, J.; Farmer, J. A.; Ruzycki, N.; Xu, L.; Campbell, C. T.; and Henkelman, G. Calcium Adsorption on MgO(100): Energetics, Structure, and Role of Defects. Journal of the American Chemical Society, 2008, 130, 2314. doi:10.1021/ja077865y.
  62. [71] Bebensee, F.; Schmid, M.; Steinrück, H.-P.; Campbell, C. T.; and Gottfried, J. M. Toward Well-Defined Metal-Polymer Interfaces: Temperature-Controlled Suppression of Subsurface Diffusion and Reaction at the Calcium/Poly(3-Hexylthiophene) Interface. Journal of the American Chemical Society, 2010, 132 (35), 12163. doi:10.1021/ja104029r.
  63. [199] Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z.; Schmid, M.; Steinrück, H.-P.; Gottfried, J. M.; and Lin, N. Coordination and Metalation Bifunctionality of Cu with 5,10,15,20-Tetra(4-Pyridyl)Porphyrin: Toward a Mixed-Valence Two-Dimensional Coordination Network. Journal of the American Chemical Society, 2012, 134 (14), 6101. doi:10.1021/ja300593w.
  64. [38] Karp, E. M.; Silbaugh, T. L.; Crowe, M. C.; and Campbell, C. T. The Energetics of Adsorbed Methanol and Methoxy on Pt(111) by Microcalorimetry. Journal of the American Chemical Society, 2012, 134 (50), 20388. doi:10.1021/ja307465u.
  65. [94] Campbell, C. T. and Sellers, J. R. The Entropies of Adsorbed Molecules. Journal of the American Chemical Society, 2012, 134 (43), 18109. doi:10.1021/ja3080117.
  66. [45] Silbaugh, T. L.; Karp, E. M.; and Campbell, C. T. Energetics of Formic Acid Conversion to Adsorbed Formates on Pt(111) by Transient Calorimetry. Journal of the American Chemical Society, 2014, 136 (10), 3964. doi:10.1021/ja412878u.
  67. [46] Karp, E. M.; Silbaugh, T. L.; and Campbell, C. T. Bond Energies of Molecular Fragments to Metal Surfaces Track Their Bond Energies to H Atom. Journal of the American Chemical Society, 2014, 136 (11), 4137. doi:10.1021/ja500997n.
  68. [32] Lytken, O.; Lew, W.; Harris, J. J. W.; Vestergaard, E. K.; Gottfried, J. M.; and Campbell, C. T. Energetics of Cyclohexene Adsorption and Reaction on Pt(111) by Low-Temperature Microcalorimetry. Journal of the American Chemical Society, 2008, 130 (31), 10247. doi:10.1021/ja801856s.
  69. [29] Farmer, J. A.; Campbell, C. T.; Xu, L.; and Henkelman, G. Defect Sites and Their Distributions on MgO(100) by Li and Ca Adsorption Calorimetry. Journal of the American Chemical Society, 2009, 131 (8), 3098. doi:10.1021/ja808986b.
  70. [57] Zhu, J.; Bebensee, F.; Hieringer, W.; Zhao, W.; Baricuatro, J. H.; Farmer, J. A.; Bai, Y.; Steinrück, H.-P.; Gottfried, J. M.; and Campbell, C. T. Formation of the Calcium/Poly(3-Hexylthiophene) Interface: Structure and Energetics. Journal of the American Chemical Society, 2009, 131 (37), 13498. doi:10.1021/ja904844c.
  71. [19] Starr, D. E. and Campbell, C. T. Low-Temperature Adsorption Microcalorimetry: Pb on MgO(100). The Journal Of Physical Chemistry B, 2001, 105 (18), 3776. doi:10.1021/jp003411a.
  72. [50] Ngo, L. T.; Xu, L.; Grant, A. W.; and Campbell, C. T. Benzene Adsorption and Dehydrogenation on Pt/ZnO(0001)-O Model Catalysts. The Journal Of Physical Chemistry B, 2003, 107 (5), 1174. doi:10.1021/jp021903c.
  73. [49] Grant, A. W.; Ngo, L. T.; Stegelman, K.; and Campbell, C. T. Cyclohexane Dehydrogenation and H2 Adsorption on Pt Particles on ZnO(0001)-O. The Journal Of Physical Chemistry B, 2003, 107 (5), 1180. doi:10.1021/jp021907h.
  74. [23] Ihm, H.; Ajo, H. M.; Gottfried, J. M.; Bera, P.; and Campbell, C. T. Calorimetric Measurement of the Heat of Adsorption of Benzene on Pt(111). The Journal Of Physical Chemistry B, 2004, 108 (38), 14627. doi:10.1021/jp040159o.
  75. [26] Gottfried, M.; Vestergaard, E. K.; Bera, P.; and Campbell, C. T. Heat of Adsorption of Naphthalene on Pt(111) Measured by Adsorption Calorimetry. The Journal Of Physical Chemistry B, 2006, 110, 17539. doi:10.1021/jp062659i.
  76. [33] Farmer, J. A.; Baricuatro, J. H.; and Campbell, C. T. Ag Adsorption on Reduced CeO2(111) Thin Films. The Journal Of Physical Chemistry C, 2010, 114 (40), 17166. doi:10.1021/jp104593y.
  77. [37] Lew, W.; Crowe, M. C.; Karp, E.; Lytken, O.; Farmer, J. A.; Árnadóttir, L.; Schoenbaum, C.; and Campbell, C. T. The Energy of Adsorbed Hydroxyl on Pt(111) by Microcalorimetry. The Journal Of Physical Chemistry C, 2011, 115 (23), 11586. doi:10.1021/jp201632t.
  78. [36] Lew, W.; Crowe, M. C.; Campbell, C. T.; Carrasco, J.; and Michaelides, A. The Energy of Hydroxyl Coadsorbed with Water on Pt(111). The Journal Of Physical Chemistry C, 2011, 115 (46), 23008. doi:10.1021/jp207350r.
  79. [198] Xiao, J.; Ditze, S.; Chen, M.; Buchner, F.; Stark, M.; Drost, M.; Steinrück, H.-P.; Gottfried, J. M.; and Marbach, H. Temperature-Dependent Chemical and Structural Transformations from 2H-Tetraphenylporphyrin to Copper(II)- Tetraphenylporphyrin on Cu(111). The Journal Of Physical Chemistry C, 2012, 116 (22), 12275. doi:10.1021/jp301757h.
  80. [39] Karp, E. and Campbell, C. T. Energetics of Oxygen Adatoms, Hydroxyl Species, and Water Dissociation on Pt(111). The Journal Of Physical Chemistry C, 2012, 116 (49), 25772. doi:10.1021/jp3066794.
  81. [70] Ju, H.; Feng, X.; Ye, Y.; Zhang, L.; Pan, H.; Campbell, C. T.; and Zhu, J. Ca Carboxylate Formation at the Calcium/Poly(Methyl Methacrylate) Interface. The Journal Of Physical Chemistry C, 2012, 116 (38), 20456. doi:10.1021/jp307010x.
  82. [41] Karp, E.; Silbaugh, T. L.; and Campbell, C. T. Energetics of Adsorbed CH3 and CH on Pt(111) by Calorimetry: Dissociative Adsorption of CH3I. The Journal Of Physical Chemistry C, 2013, 117 (12), 6325. doi:10.1021/jp400902f.
  83. [59] Sharp, J. C.; Bebensee, F.; Baricuatro, J. H.; Steinrück, H.-P.; Gottfried, J. M.; and Campbell, C. T. Calcium Thin Film Growth on a Cyano-Substituted Poly(pPhenylene Vinylene): Interface Structure and Energetics. The Journal Of Physical Chemistry C, 2013, 117 (45), 23781. doi:10.1021/jp407825f.
  84. [42] Sharp, J. C.; Yao, Y. X.; and Campbell, C. T. Silver Nanoparticles on Fe3O4(111): Energetics by Ag Adsorption Calorimetry and Structure by Surface Spectroscopies. The Journal Of Physical Chemistry C, 2013, 117 (47), 24932. doi:10.1021/jp408956x.
  85. [47] Silbaugh, T. L.; Giorgi, J. B.; Xu, Y.; Tillekaratne, A.; Zaera, F.; and Campbell, C. T. Adsorption Energy of tert-Butyl on Pt(111) by Dissociation of tert-Butyl Iodide: Calorimetry and DFT. The Journal Of Physical Chemistry C, 2014, 118 (1), 427. doi:10.1021/jp4097716.
  86. [61] Sharp, J. C.; Feng, X. F.; Farmer, J. A.; Guo, Y. X.; Bebensee, F.; Baricuatro, J. H.; Zillner, E.; Zhu, J. F.; Steinrück, H.-P.; Gottfried, J. M.; and Campbell, C. T. Calcium Thin Film Growth on Polyfluorenes: Interface Structure and Energetics. The Journal Of Physical Chemistry C, 2014, 118 (6), 2953. doi:10.1021/jp4105954.
  87. [60] Ju, H.; Ye, Y.; Feng, X.; Pan, H.; Zhu, J.; Ruzycki, N.; and Campbell, C. T. Low-Temperature Growth Improves Metal/Polymer Interfaces: Vapor-Deposited Ca on PMMA. The Journal Of Physical Chemistry C, 2014, 118 (12), 6352. doi:10.1021/jp500628w.
  88. [88] Chen, M.; Röckert, M.; Xiao, J.; Drescher, H.-J.; Steinrück, H.-P.; Lytken, O.; and Gottfried, J. M. Coordination Reactions and Layer Exchange Processes at a Buried Metal-Organic Interface. The Journal Of Physical Chemistry C, 2014, 118 (16), 8501. doi:10.1021/jp5019235.
  89. [107] Sircar, S.; Mohr, R.; Ristic, C.; and Rao, M. B. Isosteric Heat of Adsorption: Theory and Experiment. The Journal Of Physical Chemistry B, 1999, 103 (31), 6539. doi:10.1021/jp9903817.
  90. [58] Bebensee, F.; Zhu, J.; Baricuatro, J. H.; Farmer, J. A.; Bai, Y.; Steinrück, H.- P.; Campbell, C. T.; and Gottfried, J. M. Interface Formation between Calcium and Electron-Irradiated Poly(3-Hexylthiophene). Langmuir, 2010, 26 (12), 9632. doi:10.1021/la100209v.
  91. [108] Shen, D.; Bülow, M.; Siperstein, F.; Engelhard, M.; and Myers, A. L. Comparison of Experimental Techniques for Measuring Isosteric Heat of Adsorption. Adsorption, 2000, 6 (4), 275. doi:10.1023/A:1026551213604.
  92. [16] Ranney, J. T.; Starr, D. E.; Musgrove, J. E.; Bald, D. J.; and Campbell, C. T. A Microcalorimetric Study of the Heat of Adsorption of Copper on Well-Defined Oxide Thin Film Surfaces : MgO(100), p(2 × 1) Oxide on Mo(100) and Disordered W Oxide. Faraday Discussions, 1999, 144, 195. doi:10.1039/A902649E.
  93. [202] Kretschmann, A.; Walz, M.-M.; Flechtner, K.; Steinrück, H.-P.; and Gottfried, J. M. Tetraphenylporphyrin Picks up Zinc Atoms from a Silver Surface. Chemical Communications, 2007, (6), 568. doi:10.1039/B614427F.
  94. [31] Lytken, O.; Lew, W.; and Campbell, C. T. Catalytic Reaction Energetics by Single Crystal Adsorption Calorimetry: Hydrocarbons on Pt(111). Chemical Society Reviews, 2008, 37 (10), 2172. doi:10.1039/B719543P.
  95. [51] Flores-Camacho, J. M.; Fischer-Wolfarth, J.-H.; Peter, M.; Campbell, C. T.; Schauermann, S.; and Freund, H.-J. Adsorption Energetics of CO on Supported Pd Nanoparticles as a Function of Particle Size by Single Crystal Microcalorimetry. Physical Chemistry Chemical Physics, 2011, 37, 16800. doi:10.1039/C1CP21677E.
  96. [40] Liao, K.; Fiorin, V.; Jenkins, S. J.; and King, D. A. Microcalorimetry of Oxygen Adsorption on fcc Co(110). Physical Chemistry Chemical Physics, 2012, 14 (20), 7528. doi:10.1039/C2CP40549K.
  97. [44] Liao, K.; Fiorin, V.; Gunn, D. S. D.; Jenkins, S. J.; and King, D. A. SingleCrystal Adsorption Calorimetry and Density Functional Theory of CO Chemisorption on fcc Co{110}. Physical Chemistry Chemical Physics, 2013, 15 (11), 4059. doi:10.1039/C3CP43836H.
  98. [89] Sachs, M.; Gellert, M.; Chen, M.; Drescher, H.-J.; Kachel, S. R.; Zhou, H.; Zugermeier, M.; Gorgoi, M.; Roling, B.; and Gottfried, J. M. LiNi0.5Mn1.5O4 HighVoltage Cathode Coated with Li4Ti5O12: A Hard X-ray Photoelectron Spectroscopy (HAXPES) Study. Physical Chemistry Chemical Physics, 2015, 17 (47), 31790. doi:10.1039/C5CP03837E.
  99. [115] Borroni-Bird, C. E. and King, D. A. An Ultrahigh Vacuum Single Crystal Adsorption Microcalorimeter. Review of Scientific Instruments, 1991, 62 (9), 2177. doi:10.1063/1.1142525.
  100. [86] Stuckless, J. T.; Frei, N. A.; and Campbell, C. T. A Novel Single-Crystal Adsorption Calorimeter and Additions for Determining Metal Adsorption and Adhesion Energies. Review Of Scientific Instruments, 1998, 69 (6), 2427. doi:10.1063/1.1148971.
  101. [20] Starr, D. E.; Bald, D. J.; Musgrove, J. E.; Ranney, J. T.; and Campbell, C. T. Microcalorimetric Measurements of the Heat of Adsorption of Pb on Well-Defined Oxides: MgO(100) and p(2 × 1)-Oxide on Mo(100). Journal of Chemical Physics, 2001, 114 (8), 3752. doi:10.1063/1.1337097.
  102. [154] Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; Graham, T. O.; Curioni, A.; and Andreoni, W. N-Type Organic Thin-Film Transistor with High Field-Effect Mobility Based on a N,N-Dialkyl-3,4,9,10-Perylene Tetracarboxylic Diimide Derivative. Applied Physics Letters, 2002, 80 (14), 2517. doi:10.1063/1.1467706.
  103. [97] Kinne, M.; Fuhrmann, T.; Whelan, C. M.; Zhu, J. F.; Pantförder, J.; Probst, M.; Held, G.; Denecke, R.; and Steinrück, H.-P. Kinetic Parameters of CO Adsorbed on Pt(111) Studied by in situ High Resolution X-Ray Photoelectron Spectroscopy. Journal of Chemical Physics, 2002, 117 (23), 10852. doi:10.1063/1.1522405.
  104. [139] Lu, C.-S. and Lewis, O. Investigation of Film-Thickness Determination by Oscillating Quartz Resonators with Large Mass Load. Journal of Applied Physics, 1972, 43 (11), 4385. doi:10.1063/1.1660931.
  105. [143] Mueller, R. M. and White, W. Direct Gravimetric Calibration of a Quartz Crystal Microbalance. Review Of Scientific Instruments, 1968, 39 (3), 291. doi:10.1063/1.1683352.
  106. [149] Levinstein, H. J.; Ballman, A. A.; and Capio, C. D. Domain Structure and Curie Temperature of Single-Crystal Lithium Tantalate. Journal of Applied Physics, 1966, 37 (12), 4585. doi:10.1063/1.1708088.
  107. [236] Schneider, P. Thermionic Emission of Thoriated Tungsten. The Journal of Chemical Physics, 1958, 28 (4), 675. doi:10.1063/1.1744212.
  108. [119] Ajo, H. M.; Ihm, H.; Moilanen, D. E.; and Campbell, C. T. Calorimeter for Adsorption Energies of Larger Molecules on Single Crystal Surfaces. Review Of Scientific Instruments, 2004, 75 (11), 4471. doi:10.1063/1.1794391.
  109. [120] Murdey, R.; Liang, S. J. S.; and Stuckless, J. T. An Atom-Transparent Photon Block for Metal-Atom Deposition from High-Temperature Ovens. Review Of Scientific Instruments, 2005, 76, 023911. doi:10.1063/1.1855315.
  110. [69] Gavrila, G.; Zahn, D. R. T.; and Braun, W. High Resolution Photoemission Spectroscopy: Evidence for Strong Chemical Interaction between Mg and 3,4,9,10- Perylene-Tetracarboxylic Dianhydride. Applied Physics Letters, 2006, 89, 162102. doi:10.1063/1.2356305.
  111. [25] Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; and Kay, B. D. n-Alkanes on Pt(111) and on C(0001)/Pt(111): Chain Length Dependence of Kinetic Desorption Parameters. The Journal of Chemical Physics, 2006, 125, 234308. doi:10.1063/1.2400235.
  112. [121] Lew, W.; Lytken, O.; Farmer, J. A.; Crowe, M. C.; and Campbell, C. T. Improved Pyroelectric Detectors for Single Crystal Adsorption Calorimetry from 100 to 350 K. Review Of Scientific Instruments, 2010, 81 (2), 24102. doi:10.1063/1.3290632.
  113. [93] Etzel, K. D.; Bickel, K. R.; and Schuster, R. A Microcalorimeter for Measuring Heat Effects of Electrochemical Reactions with Submonolayer Conversions. Review of Scientific Instruments, 2010, 81 (3), 034101. doi:10.1063/1.3309785.
  114. [79] Popovici, D.; Piyakis, K.; Meunier, M.; and Sacher, E. Angle-Resolved X-Ray Photoelectron Spectroscopy Comparison of Copper/Teflon AF1600 and Aluminum/Kapton Metal Diffusion. Journal of Applied Physics, 1998, 83 (1), 108. doi:10.1063/1.366706.
  115. [83] Pireaux, J. J.; Thiry, P. A.; Caudano, R.; and Pfluger, P. Surface Analysis of Polyethylene and Hexatriacontane by High Resolution Electron Energy Loss Spectroscopy. The Journal of Chemical Physics, 1986, 84 (11), 6452. doi:10.1063/1.450852.
  116. [84] DiNardo, N. J.; Demuth, J. E.; and Clarke, T. C. Electron Vibrational Spectroscopy of Thin Polyimide Films. The Journal of Chemical Physics, 1986, 85 (11), 6739. doi:10.1063/1.451405.
  117. [82] Pireaux, J. J.; Vermeersch, M.; Grégoire, C.; Thiry, P. A.; Caudano, R.; and Clarke, T. C. The Aluminum-Polyimide Interface: An Electron-Induced Vibrational Spectroscopy Approach. The Journal of Chemical Physics, 1988, 88 (5), 3353. doi:10.1063/1.453930.
  118. [12] Stuckless, J. T.; Al-Sarraf, N.; Wartnaby, C.; and King, D. A. Calorimetric Heats of Adsorption for CO on Nickel Single Crystal Surfaces. The Journal of Chemical Physics, 1993, 99 (3), 2202. doi:10.1063/1.465282.
  119. [76] Dannetun, P.; Boman, M.; Stafström, S.; Salaneck, W. R.; Lazzaroni, R.; Fredriksson, C.; Brédas, J. L.; Zamboni, R.; and Taliani, C. The Chemical and Electronic Structure of the Interface between Aluminum and Polythiophene Semiconductors. Journal of Chemical Physics, 1993, 99 (1), 664. doi:10.1063/1.466217.
  120. [14] Stuckless, J. T.; Starr, D. E.; Bald, D. J.; and Campbell, C. T. Metal Adsorption Calorimetry and Adhesion Energies on Clean Single-Crystal Surfaces. Journal of Chemical Physics, 1997, 107 (14), 5547. doi:10.1063/1.474230.
  121. [87] Sellers, J. R. V.; James, T. E.; Hemmingson, S. L.; Farmer, J. A.; and Campbell, C. T. Adsorption Calorimetry During Metal Vapor Deposition on Single Crystal Surfaces: Increased Flux, Reduced Optical Radiation, and Real-Time Flux and Reflectivity Measurements. Review Of Scientific Instruments, 2013, 84, 123901. doi:10.1063/1.4832980.
  122. [126] Hörtz, P. and Schäfer, R. A Compact Low-Temperature Single Crystal Adsorption Calorimetry Setup for Measuring Coverage Dependent Heats of Adsorption at Cryogenic Temperatures. Review of Scientific Instruments, 2014, 85, 074101. doi:10.1063/1.4890435.
  123. [129] Das-Gupta, D. K. On the Nature of Pyroelectricity in Polyvinylidene Fluoride. Ferroelectrics, 1981, 33 (1), 75. doi:10.1080/00150198108008072.
  124. [131] Porter, S. G. A Brief Guide to Pyroelectric Detectors. Ferroelectrics, 1981, 33 (1), 193. doi:10.1080/00150198108008086.
  125. [128] Das-Gupta, D. K. Pyroelectricity in Polymers. Ferroelectrics, 1991, 118 (1), 165. doi:10.1080/00150199108014757.
  126. [148] Teyssedre, G.; Bernes, A.; and Lacabanne, C. Temperature Dependence of the Pyroelectric Coefficient in Polyvinylidene Fluoride. Ferroelectrics, 1994, 160, 67. doi:10.1080/00150199408007696.
  127. [101] Falconer, J. L. and Schwarz, J. A. Temperature-Programmed Desorption and Reaction: Applications to Supported Catalysts. Catalysis Reviews: Science and Engineering, 1983, 25 (2), 141. doi:10.1080/01614948308079666.
  128. [156] Thomson, W. On the Equilibrium of Vapour at a Curved Surface of Liquid. Philosophical Magazine Series 4, 1871, 42 (282), 448. doi:10.1080/14786447108640606.
  129. [130] Damjanovic, D. Ferroelectric, Dielectric, and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics. Reports on Progress in Physics, 1998, 61 (9), 1267. doi:10.1088/0034-4885/61/9/002.
  130. [64] Kowarik, S.; Gerlach, A.; and Schreiber, F. Organic Molecular Beam Deposition: Fundamentals, Growth Dynamics, and in situ Studies. Journal of Physics Condensed Matter, 2008, 20 (18), 184008. doi:10.1088/0953-8984/20/18/184005.
  131. [144] Cumpson, P. and Seah, M. The Quartz Crystal Microbalance; Radial/Polar Dependence of Mass Sensitivity - Both on and off the Electrodes. Measurement Science and Technology, 1990, 1 (7), 544. doi:10.1088/0957-0233/1/7/002.
  132. [98] Langmuir, I. The Evaporation, Condensation, and Reflection of Molecules and the Mechanism of Adsorption. Physical Review, 1916, 8 (2), 149. doi:10.1103/PhysRev.8.149.
  133. [77] Hirose, Y.; Kahn, A.; Aristov, V.; Soukiassian, P.; Bulovic, V.; and Forrest, S. R. Chemistry and Electronic Properties of Metal-Organic Semiconductor Interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Physical Review B, 1996, 54 (19), 13748. doi:10.1103/PhysRevB.54.13748.
  134. [15] Stuckless, J. T.; Starr, D. E.; Bald, D. J.; and Campbell, C. T. Calorimetric Measurements of the Energetics of Pb Adsorption and Adhesion to Mo(100). Physical Reviev B, 1997, 56 (20), 13496. doi:10.1103/PhysRevB.56.13496.
  135. [72] Murr, J. and Ziegler, C. Interaction of Na with Sexithiophene Thin Films. Physical Review B, 1998, 57 (12), 7299. doi:10.1103/PhysRevB.57.7299.
  136. [223] Krause, B.; Dürr, A. C.; Ritley, K.; Schreiber, F.; Dosch, H.; and Smilgies, D. Structure and Growth Morphology of an Archetypal System for Organic Epitaxy: PTCDA on Ag(111). Physical Review B, 2002, 66, 235404. doi:10.1103/PhysRevB.66.235404.
  137. [30] Farmer, J. A.; Ruzycki, N.; Zhu, J.; and Campbell, C. T. Lithium Adsorption on MgO(100) and Its Defects: Charge Transfer, Structure, and Energetics. Physical Review B, 2009, 80 (3), 035418. doi:10.1103/PhysRevB.80.035418.
  138. [127] Fischer-Wolfarth, J.-H.; Farmer, J. A.; Flores-Camacho, J. M.; Genest, A.; Yudanov, I. V.; Rösch, N.; Campbell, C. T.; Schauermann, S.; and Freund, H.-J. Particle-Size Dependent Heats of Adsorption of CO on Supported Pd Nanoparticles as Measured with a Single-Crystal Microcalorimeter. Physical Reviev B, 2010, 81 (24), 241416. doi:10.1103/PhysRevB.81.241416.
  139. [18] Starr, D. E.; Ranney, J. T.; Larsen, J. H.; Musgrove, J. E.; and Campbell, C. T. Measurement of the Energetics of Metal Film Growth on a Semiconductor: Ag/Si(100)-(2 × 1). Physical Review Letters, 2001, 87 (10), 106102. doi:10.1103/PhysRevLett.87.106102.
  140. [226] Ashida, M.; Yanagi, H.; Hayashi, S.; and Takemoto, K. Epitaxial Growth and Molecular Orientation of Tetraphenylporphyrin Thin Film Vacuum-Evaporated on KCI. Acta Crystallographica Section B, 1991, 47 (1), 87. doi:10.1107/S0108768190008904.
  141. [113] Edinger, K.; Gotszalk, T.; and Rangelow, I. W. Novel High Resolution Scanning Thermal Probe. Journal of Vacuum Science & Technology B, 2001, 19 (6), 2856. doi:10.1116/1.1420580.
  142. [140] Lu, C.-S. Mass Determination with Piezoelectric Quartz Crystal Resonators. Journal of Vacuum Science & Technology, 1975, 12 (1), 578. doi:10.1116/1.568614.
  143. [114] Coufal, H. J.; Grygier, R. K.; Horne, D. E.; and Fromm, J. E. Pyroelectric Calorimeter for Photothermal Studies of Thin Films and Adsorbates. Journal of Vacuum Science & Technology A, 1987, 5 (5), 2875. doi:10.1116/1.574258.
  144. [34] Farmer, J. A. and Campbell, C. T. Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science, 2010, 329 (5994), 933. doi:10.1126/science.1191778.
  145. [210] Garnier, F.; Hajlaoui, R.; Yassara, A.; and Srivastava, P. All-Polymer FieldEffect Transistor Realized by Printing Techniques. Science, 1994, 265 (5179), 1684. doi:10.1126/science.265.5179.1684.
  146. [134] Kochervinski˘ı, V. V. Piezoelectricity in Crystallizing Ferroelectric Polymers: Poly(Vinylidene Fluoride) and Its Copolymers (A Review). Crystallography Reports, 2003, 48 (4), 649. doi:10.1134/1.1595194.
  147. [111] Crowe, M. C. and Campbell, C. T. Adsorption Microcalorimetry: Recent Advances in Instrumentation and Application. Annual Review of Analytical Chemistry, 2011, 4, 41. doi:10.1146/annurev-anchem-061010-113841.
  148. [168] Heras, J. M. and Albano, E. V. Adsorption of Water on Gold Films - A Work Function and Thermal Desorption Mass Spectrometry Study. Zeitschrift für Physikalische Chemie, 1982, 129, 11. doi:10.1524/zpch.1982.129.1.011.
  149. [63] Witte, G. and Wöll, C. Growth of Aromatic Molecules on Solid Substrates for Applications in Organic Electronics. Journal of Materials Research, 2004, 19 (7), 1889. doi:10.1557/JMR.2004.0251.
  150. [10] Černý, S. Adsorption Calorimetry on Filaments, Vacuum-Evaporated Films, and Single Crystals of Metals. Thermochimica Acta, 1998, 312 (1-2), 3. doi:10.1016/S0040- 6031(97)00435-8.
  151. [2] Černý, S.; Ponec, V.; and Hládek, L. Calorimetric Heats of Adsorption of Hydrogen on Molybdenum Films. Journal of Catalysis, 1966, 5 (1), 27. doi:10.1016/S0021- 9517(66)80122-7.
  152. [5] Černý, S.; Smutek, M.; and Buzek, F. Calorimetric Studies of Hydrocarbon Adsorption on Metal Films: II. Ethylene, Acetylene, Propylene, Methylacetylene and Allene on Molybdenum. Journal of Catalysis, 1977, 47 (2), 166. doi:10.1016/0021- 9517(77)90164-6.
  153. [239] N.N. Crystallographic Data on Minerals. In Haynes, W. M., Editor, CRC Handbook of Chemistry and Physics 95th Edition (Internet Version). CRC Press/Taylor and Francis, Boca Raton, FL., 2015, p. 4.11.
  154. [90] Chen, M.; Klein, B.; Krug, C.; Zugermeier, M.; Zhou, H.; Drescher, H.-J.; Gorgoi, M.; and Gottfried, J. M. Formation of a Metal/Organic Interphase Monitored Using a Well-Defined Porphyrin Metalation Reaction: A Hard X-Ray Photoelectron Spectroscopy (HAXPES) Study, In Preparation.
  155. [142] Intellevation Ltd., 5 Dalziel Road, Hillington Park, Glasgow, G52 4NN. Model IL150 Thickness Monitor Instruction Manual, 4.1 Edition.
  156. [182] N.N. Ionization Energies of Atoms and Atomsomic Ions. In Haynes, W. M., Editor, CRC Handbook of Chemistry and Physics 95th Edition (Internet Version). CRC Press/Taylor and Francis, Boca Raton, FL., 2015, p. 10.5.
  157. [105] Drescher, H.-J. Konstruktion und Charakterisierung eines Detektors für die Adsorptionsmikrokalorimetrie. Diploma thesis, Universität Erlangen-Nürnberg, 2008.
  158. [106] Bebensee, F. Metal-Polymer Interfaces Studied with Adsorption Microcalorimetry and Photoelectron Spectroscopy. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2010.
  159. [170] Powell, C. J. and Jablonski, A. NIST Electron Inelastic-Mean-Free-Path Database - Version 2. National Institute of Standards and Technology, Gaithersburg, MD, 2010.
  160. [241] Chase, M. J. NIST-JANAF Themochemical Tables, Volume Monograph 9. Journal of Physical and Chemical Reference Data, 4th Edition, 1998.
  161. [155] WaveMetrics, Inc., PO Box 2088 Lake Oswego, OR 97035 USA. IGOR Pro, 6.34 Edition, 2013.
  162. [172] Krim, J. and Daly, C. Quartz Monitors and Microbalances. In Glocker, D. A.; Shah, S. I.; and Westwood, W. D., Editors, Handbook of Thin Film Process Technology, Chapter D4.0. Bristol, UK ; Philadelphia : Institute of Physics Pub.„ 1995, pp. 1-6.
  163. [137] Polyanskiy, M. N. Refractive Index Database. In Silver. Available at http:// refractiveindex.info, 2015, p. Reflection.
  164. [201] Sigma-Aldrich Chemie GmbH, Riedstrasse 2 D - 89555 Steinheim. Material Safety Data Sheet - Zinc (#267635), 5.0th Edition.
  165. [169] Sigma-Aldrich Chemie GmbH, Riedstrasse 2 D - 89555 Steinheim. Material Safety Data Sheet - Poly(Propylene Glycol) (#202347), 5.1st Edition.
  166. [81] Lippitz, A.; Koprinarov, I.; Friedrich, J.; Unger, W.; Weiss, K.; and Wöll, C. Surface Analysis of Metallized Poly(Bisphenol A Carbonate) Films by X-Ray Absorption Spectroscopy (NEXAFS). Polymer, 1996, 37 (14), 3157. doi:10.1016/0032- 3861(96)89419-5.
  167. [237] Notes on Extending Crystal Life. Available at http://www.intellemetrics.com/ xtalcrystals.htm, 2014.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten