Publikationsserver der Universitätsbibliothek Marburg

Titel:Novel deep branching Cu-containing membrane-bound monooxygenases: distribution and function
Autor:Hainbuch, Stephanie
Weitere Beteiligte: Frenzel, Peter (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0414
DOI: https://doi.org/10.17192/z2015.0414
URN: urn:nbn:de:hebis:04-z2015-04149
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Neue kupferabhängige membrangebundene Monooxygenasen: Verbreitung und physiologische Funktion
Publikationsdatum:2015-12-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Methanotrophe Bakterien, pmoA, methane, methanotrophic bacteria, pxmA, pmoA, alkanes, Alkane, Methan, Monooxygenasen, monooxygenases

Summary:
The key enzyme of the aerobic methane oxidation is the particulate methane monooxygenase (pMMO) pMMOs are members of the great family of Cu-containing membrane-bound monooxygenases (CuMMO). Genes of the pMMO operon can occur in multiple copies within the genome of methanotrophic bacteria. Some of them encode pMMO isoenzymes with alternative functions. A new isoenzyme (pXMO) has been recently found in some alpha- and gamma-proteobacterial methanotrophs. pxmA sequences of this isoenzyme do not cluster within groups of characterized pmoA sequences but within the environmental group (M84_P105) that belongs to the distantly related intermediate CuMMO (iCuMMO). To analyze the distribution of pxmA sequences in methanotrophic pure cultures and nature primers were designed that target several iCuMMO groups (including M84_P105). The pxmA could be detected in several strains of the methylotrophic genera Methylomonas, Methylobacter and Methylosarcina. Additionally, it could be shown that pxmA sequences are widespread and numerous in different environment. Almost all iCuMMO groups are not represented by pure cultures. Hence, little sequence information is available which makes the study of the iCuMMOs difficult. A magnetic capture hybridization method (MCH) was established to gain more sequence information of the iCuMMOs. MCH avoids the use of specific primers and may provide long target sequences and information about operon structures of the iCuMMOs. The physiological functions of the iCuMMOs are unknown. Due to a phylogenetic relationship of pxmA sequences to sequences of alkane oxidizers we suggested that they might be involved in alkane degradation, too. However, incubation experiments of pure cultures and environmental indicate that the analyzed iCuMMOs are not involved in alkane degradation. Pure culture incubations indicate that the pxmA of the environmental group M84_P105 might be involved in methane oxidation. But further studies need to be performed to confirm this hypothesis. The physiological function of the other iCuMMO groups remains still unknown. iCuMMOs were underestimated for a long time but this study shows that are widely distributed and may play an important role global element cycles. Methanotrophic bacteria has been believed to be obligate but facultative methanotrophs has been found among the type II methanotrophs that grow on substrates with carbon-carbon bounds like acetate, pyruvate, succinate, malate and ethanol. In this study we could show that type II methanotrophs play a role in the degradation of short chained alkanes in rice field soils. If they use the alkanes directly or if they use metabolic products provided by other bacteria needs to be analyzed. But these findings show that the restricted role of the methanotrophs to certain substrates and specific functions needs to be expended.

Bibliographie / References

  1. Vanginkel, C.G., H.G.J. Welten & J.A.M. Debont, (1987) Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Appl. Environ. Microbiol. 53: 2903-2907.
  2. Uchiyama, H., T. Nakajima, O. Yagi & T. Nakahara, (1992) Role of Heterotrophic Bacteria in Complete Mineralization of Trichloroethylene by Methylocystis Sp Strain-M. Appl. Environ. Microbiol. 58: 3067-3071.
  3. Vlieg, J.E.T.V., J. Kingma, A.J. van den Wijngaard & D.B. Janssen, (1998) A glutathione S-transferase with activity towards cis-1,2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl. Environ. Microbiol. 64: 2800-2805.
  4. Hamamura, N., R.T. Storfa, L. Semprini & D.J. Arp, (1999) Diversity in butane monooxygenases among butane-grown bacteria. Appl. Environ. Microbiol. 65: 4586-4593. References 127
  5. Suzuki, S.I., T. Okuda & S. Komatsubara, (1999) Selective isolation and distribution of Sporichthya strains in soil. Appl. Environ. Microbiol. 65: 1930-1935.
  6. Verce, M.F., R.L. Ulrich & D.L. Freedman, (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl. Environ. Microbiol. 66: 3535-3542.
  7. Margesin, R., D. Labbe, F. Schinner, C.W. Greer & L.G. Whyte, (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092.
  8. Yimga, M.T., P.F. Dunfield, P. Ricke, H. Heyer & W. Liesack, (2003) Wide distribution of a novel pmoA- like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl. Environ. Microbiol. 69: 5593-5602.
  9. Knief, C., S. Vanitchung, N.W. Harvey, R. Conrad, P.F. Dunfield & A. Chidthaisong, (2005) Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl. Environ. Microbiol. 71: 3826-3831.
  10. Johnson, E.L. & M.R. Hyman, (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl. Environ. Microbiol. 72: 950-952.
  11. Bodrossy, L., N. Stralis-Pavese, M. Konrad-Koszler, A. Weilharter, T.G. Reichenauer, D. Schofer & A. Sessitsch, (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 72: 1672-1676.
  12. Fierer, N., M. Breitbart, J. Nulton, P. Salamon, C. Lozupone, R. Jones, M. Robeson, R.A. Edwards, B. Felts, S. Rayhawk, R. Knight, F. Rohwer & R.B. Jackson, (2007) Metagenomic and small- subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73: 7059-7066.
  13. Isenbarger, T.A., M. Finney, C. Rios-Velazquez, J. Handelsman & G. Ruvkun, (2008) Miniprimer PCR, a new lens for viewing the microbial world. Appl. Environ. Microbiol. 74: 840-849.
  14. Redmond, M.C., D.L. Valentine & A.L. Sessions, (2010) Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing. Appl. Environ. Microbiol. 76: 6412-6422.
  15. Dorr, N., B. Glaser & S. Kolb, (2010) Methanotrophic Communities in Brazilian Ferralsols from Naturally Forested, Afforested, and Agricultural Sites. Appl. Environ. Microbiol. 76: 1307- 1310.
  16. Lüke, C. & P. Frenzel, (2011) Potential of pmoA Amplicon Pyrosequencing for Methanotroph Diversity Studies. Appl. Environ. Microbiol. 77: 6305-6309.
  17. Kohler, T., C. Dietrich, R.H. Scheffrahn & A. Brune, (2012) High-resolution analysis of gut Environment and bacterial microbiota reveals functional compartmentation of the gut in wood feeding hgher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78: 4691-4701.
  18. Vorobev, A., S. Jagadevan, S. Jain, K. Anantharaman, G.J. Dick, S. Vuilleumier & J.D. Semrau, (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl. Environ. Microbiol. 80: 3044-3052.
  19. Puri, A.W., S. Owen, F. Chu, T. Chavkin, D.A.C. Beck, M.G. Kalyuzhnaya & M.E. Lidstrom, (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81: 1766-1772. References 128
  20. Labinger, J.A. & J.E. Bercaw, (2002) Understanding and exploiting C-H bond activation. Nature 417: 507-514. References 114
  21. Pruesse, E., J. Peplies & F.O. Glockner, (2012) SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829.
  22. Trotsenko, Y.A. & J.C. Murrell, (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183-229.
  23. Altschul, S. F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1006/jmbi.1990.9999
  24. Nie, Y., C.Q. Chi, H. Fang, J.L. Liang, S.L. Lu, G.L. Lai, Y.Q. Tang & X.L. Wu, (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep. Uk. 4. doi:10.1038/srep04968 References 115
  25. Jurelevicius, D., V.M. Alvarez, R. Peixoto, A.S. Rosado & L. Seldin, (2013) The use of a combination of alkB primers to better characterize the distribution of alkane degrading bacteria. Plos One 8. doi: 10.1371/journal.pone.0066565
  26. Khadem, A.F., A. Pol, A.S. Wieczorek, M.S.M. Jetten & H.J.M.O. den Camp, (2012) Metabolic regulation of "Ca. Methylacidiphilum fumariolicum" SoIV cells grown under different nitrogen and oxygen limitations. Front. Microbiol. 3. doi: 10.3389/fmicb.2012.00266
  27. Zhang, P., Y. Chen, Q. Zhou, X. Zheng, X. Zhu & Y. Zhao, (2010) Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environ. Sci. Technol. 44: 9343-9348. References 126
  28. Angel, R. & R. Conrad, (2009) In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ. Microbiol. 11: 2598-2610.
  29. Conrad, R., (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1: 285-292. References 111
  30. Arp, D.J., P.S.G. Chain & M.G. Klotz, (2007) The Impact of Genome Analyses on Our Understanding of Ammonia-Oxidizing Bacteria. Annu. Rev. Microbiol. 61: 503-528
  31. Dunfield, P.F., M.T. Yimga, S.N. Dedysh, U. Berger, W. Liesack & J. Heyer, (2002) Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol. Ecol. 41: 17-26.
  32. Holmes, A.J., A. Costello, M.E. Lidstrom & J.C. Murrell, (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.
  33. Semrau, J.D., A.A. DiSpirito & S. Vuilleumier, (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol. Lett. 323: 1-12.
  34. van der Ha, D., I. Vanwonterghem, S. Hoefman, P. De Vos & N. Boon, (2013) Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations. Anton. Leeuw. Int. J. G. 103: 527-537.
  35. Ouattara, A.S., E.A. Assih, S. Thierry, J.L. Cayol, M. Labat, O. Monroy & H. Macarie, (2003) Bosea minatitlanensis sp nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int. J. Syst. Evol. Microbiol. 53: 1247-1251.
  36. Malik, K.A. & D. Claus, (1979) Xanthobacter-Flavus, a New Species of Nitrogen-Fixing Hydrogen Bacteria. Int. J. Syst. Bacteriol. 29: 283-287.
  37. Dunfield, P.F., S.E. Belova, A.V. Vorob'ev, S.L. Cornish & S.N. Dedysh, (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int. J. Syst. Evol. Microbiol. 60: 2659-2664.
  38. Kotani, T., T. Yamamoto, H. Yurimoto, Y. Sakai & N. Kato, (2003) Propane monooxygenase and NAD(+)-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp strain TY-5. J. Bacteriol. 185: 7120-7128.
  39. Dedysh, S.N., C. Knief & P.F. Dunfield, (2005) Methylocella species are facultatively methanotrophic. J. Bacteriol. 187: 4665-4670.
  40. Sabirova, J.S., M. Ferrer, D. Regenhardt, K.N. Timmis & P.N. Golyshin, (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J. Bacteriol. 188: 3763-3773.
  41. King, G.M. & K. Nanba, (2008) Distribution of Atmospheric Methane Oxidation and Methanotrophic Communities on Hawaiian Volcanic Deposits and Soils. Microbes Environ. 23: 326-330.
  42. DiSpirito, A. A., J. Gulledge, J. C. Murrell, A. K. Shiemke, M. E. Lidstrom & C. L. Krema, (1992) Trichloroethylene oxidation by the membrane associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation 2:151–164.
  43. Brakstad, O.G. & A.G. Lodeng, (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb. Ecol. 49: 94-103.
  44. Liebner, S., K. Rublack, T. Stuehrmann & D. Wagner, (2009) Diversity of Aerobic Methanotrophic Bacteria in a Permafrost Active Layer Soil of the Lena Delta, Siberia. Microb. Ecol. 57: 25-35.
  45. Wang, W.P., L.P. Wang & Z.Z. Shao, (2010) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in thesubtropical seawater of Xiamen Island. Microb. Ecol. 60: 429-439.
  46. van Beilen, J.B. & E.G. Funhoff, (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 74: 13-21. References 117
  47. Jia, Z.J., H. Kikuchi, T. Watanabe, S. Asakawa & M. Kimura, (2007) Molecular identification of methane oxidizing bacteria in a Japanese rice field soil. Biol. Fertil. Soils. 44: 121-130.
  48. Tourova, T.P., T.N. Nazina, E.M. Mikhailova, T.A. Rodionova, A.N. Ekimov, A.V. Mashukova & A.B. Poltaraus, (2008) alkB homologs in thermophilic bacteria of the genus Geobacillus. Mol. Biol. 42: 217-226.
  49. Wissenschaftliche Publikationen Hainbuch, S., C. Lüke & P. Frenzel. An unexpected diversity of Cu-containing membrane-bound monooxygenases: new pmoA-like sequences retrieved from aquatic environments and pure cultures. In Revision Hainbuch, S., C. Lüke & P. Frenzel Monooxygenases involved in the degradation of short chained gaseous hydrocarbons in a rice field soil. In preparation Beiträge zu wissenschaftlichen Tagungen
  50. Stephanie Hainbuch, Claudia Lüke, Peter Frenzel; " Deep branching monooxygenases in methanotrophic bacteria: function and diversity " ISME 14th The Power Of The Small; August 2012; Copenhagen, Denmark (Poster presentation)
  51. Stephanie Hainbuch, Claudia Lüke, Peter Frenzel; " Function and Diversity of Monooxygenase Isoenzymes in Type Ia Methanotrophic Bacteria " ; GRC: Molecular Basis of Microbial OneCarbon Metabolism; August 2012; Lewiston ME, USA, (Poster presentation)
  52. Williams, S.T., M. Goodfellow & G. Alderson, (1989) Genus Sporichthya. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey's manual of systematic bacteriology, vol. 4. Williams and Wilkins, Baltimore, Md, pp 2507–2508
  53. Bowman, J., (2006) The Methanotrophs. The Families Methylococcaceae and Methylocystaceae. In The Prokaryotes. Dworkin,M. (ed). New York: Springer, 266-289.
  54. Söhngen, N.L., (1906) Uber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Parasitenkd. Infectionskr. Abt. 2 15: 513-517.
  55. Lidstromoconnor, M.E., G.L. Fulton & A.E. Wopat, (1983) Methylobacterium-Ethanolicum -a Syntrophic Association of 2 Methylotrophic Bacteria. J. Gen. Microbiol. 129: 3139-3148.
  56. Stolyar, S., A.M. Costello, T.L. Peeples & M.E. Lidstrom, (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiol-Uk 145: 1235-1244.
  57. Saeki, H., M. Akira, K. Furuhashi, B. Averhoff & G. Gottschalk, (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiol. Uk 145: 1721-1730.
  58. Liew, E.F., D.C. Tong, N.V. Coleman & A.J. Holmes, (2014) Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology 160: 1267-1277.
  59. Whittenbury, R., K.C. Phillips & J.F. Wilkinson, (1970) Enrichment, Isolation and Some Properties of Methane-Utilizing Bacteria. J. Gen. Microbiol. 61: 205-218.
  60. Whittenbury, R., S.L. Davies & J.F. Davey, (1970) Exospores and cysts formed by methane-utilizing bacteria. J. Gen. Microbiol. 61: 219-226.
  61. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K.H. Schleifer, (2004) ARB: a software environment for sequence data. Nucleic. Acids. Res. 32: 1363-1371.
  62. Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies & F.O. Glöckner, (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: D590-D596.
  63. Pacheco-Oliver, M., I.R. McDonald, D. Groleau, J.C. Murrell & C.B. Miguez, (2002) Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. FEMS Microbiol. Lett. 209: 313-319.
  64. van Beilen, J.B., Z. Li, W.A. Duetz, T.H.M. Smits & B. Witholt, (2003) Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology-Revue de l Institut Francais du Petrole 58: 427-440.
  65. Shennan, J.L., (2006) Utilisation of C-2-C-4 gaseous hydrocarbons and isoprene by microorganisms. J. Chem. Technol. Biotechnol. 81: 237-256.
  66. Lüke, C., P. Frenzel, A. Ho, D. Fiantis, P. Schad, B. Schneider, L. Schwark & S.R. Utami, (2014) Macroecology of methane-oxidizing bacteria: the beta-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ. Microbiol. 16: 72-83.
  67. Theisen, A.R., M.H. Ali, S. Radajewski, M.G. Dumont, P.F. Dunfield, I.R. McDonald, S.N. Dedysh, C.B. Miguez & J.C. Murrell, (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol. Microbiol. 58: 682-692.
  68. Chen, Y., M.G. Dumont, A. Cebron & J.C. Murrell, (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol. 9: 2855-2869.
  69. Murase, J. & P. Frenzel, (2007) A methane-driven microbial food web in a wetland rice soil. Environ. Microbiol. 9: 3025-3034.
  70. Murrell, (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ. Microbiol. 10: 446-459.
  71. Lesaulnier, C., D. Papamichail, S. McCorkle, B. Ollivier, S. Skiena, S. Taghavi, D. Zak & D. van der Lelie, (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10: 926-941.
  72. Kuhn, E., G.S. Bellicanta & V.H. Pellizari, (2009) New alk genes detected in Antarctic marine sediments. Environ. Microbiol. 11: 669-673.
  73. Rojo, F., (2009) Degradation of alkanes by bacteria. Environ. Microbiol. 11: 2477-2490.
  74. Op den Camp, H.J.M., T. Islam, M.B. Stott, H.R. Harhangi, A. Hynes, S. Schouten, M.S.M. Jetten, N.K. Birkeland, A. Pol & P.F. Dunfield, (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1: 293-306.
  75. Petersen, J.M. & N. Dubilier, (2009) Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 1: 319-335.
  76. Belova, S.E., M. Baani, N.E. Suzina, P.L.E. Bodelier, W. Liesack & S.N. Dedysh, (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 3: 36-46.
  77. Tavormina, P.L., V.J. Orphan, M.G. Kalyuzhnaya, M.S.M. Jetten & M.G. Klotz, (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ. Microbiol. Rep. 3: 91-100. References 129
  78. Sayavedra-Soto, L.A., N. Hamamura, C.W. Liu, J.A. Kimbrel, J.H. Chang & D.J. Arp, (2011) The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ. Microbiol. Rep. 3: 390-396.
  79. Lüke, C., L. Bodrossy, E. Lupotto & P. Frenzel, (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environ. Microbiol. Rep. 3: 518-525.
  80. Krause, S., C. Lüke & P. Frenzel, (2012) Methane source strength and energy flow shape methanotrophic communities in oxygen-methane counter-gradients. Environ. Microbiol. Rep. 4: 203-208.
  81. Smith, S.M., S. Rawat, J. Telser, B.M. Hoffman, T.L. Stemmler & A.C. Rosenzweig, (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry U.S. 50: 10231-10240.
  82. Perez-de-Mora, A., M. Engel & M. Schloter, (2011) Abundance and diversity of n-alkane degrading bacteria in a forest soil contaminated with hydrocarbons and metals: A molecular study on alkB homologous genes. Microb. Ecol. 62: 959-972.
  83. Qiu, Q.F., M. Noll, W.R. Abraham, Y.H. Lu & R. Conrad, (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J. 2: 602-614.
  84. Riviere, D., V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho & A. Sghir, (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700-714.
  85. Coleman, N.V., N.B. Le, M.A. Ly, H.E. Ogawa, V. McCarl, N.L. Wilson & A.J. Holmes, (2011a) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 6: 171-182
  86. Reim, A., C. Lüke, S. Krause, J. Pratscher & P. Frenzel, (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic- anoxic interface in a flooded paddy soil. ISME J. 6: 2128-2139.
  87. Schulz, S., J. Giebler, A. Chatzinotas, L.Y. Wick, I. Fetzer, G. Welzl, H. Harms & M. Schloter, (2012) Plant litter and soil type drive abundance, activity and community structure of alkB harbouring microbes in different soil compartments. ISME J. 6: 1763-1774.
  88. Lieberman, R.L. & A.C. Rosenzweig, (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434: 177-182.
  89. Santelli, C.M., B.N. Orcutt, E. Banning, W. Bach, C.L. Moyer, M.L. Sogin, H. Staudigel & K.J. Edwards, (2008) Abundance and diversity of microbial life in ocean crust. Nature 453: 653-656. References 116
  90. Kip, N., J.F. van Winden, Y. Pan, L. Bodrossy, G.J. Reichart, A.J.P. Smolders, M.S.M. Jetten, J.S.S. Damste & H.J.M. Op den Camp, (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat. Geosci. 3: 617-621.
  91. Rinke, C., J. Lee, N. Nath, D. Goudeau, B. Thompson, N. Poulton, E. Dmitrieff, R. Malmstrom, R. Stepanauskas & T. Woyke, (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nature Prot. 9: 1038-1048.
  92. Baani, M. & W. Liesack, (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp strain SC2. Proceedings of the Proc. Natl. Acad. Sci. U. S. A. 105: 10203-10208.
  93. Hakemian, A.S., K.C. Kondapalli, J. Telser, B.M. Hoffman, T.L. Stemmler & A.C. Rosenzweig, (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry U.S. 47: 6793-6801.
  94. Suzuki, T., T. Nakamura & H. Fuse, (2012) Isolation of two novel marine ethylene-assimilating bacteria, Haliea species ETY-M and ETY-NAG, containing particulate methane monooxygenase-like genes. Microbes Environ. 27: 54-60.
  95. Ricke, P., C. Erkel, M. Kube, R. Reinhardt & W. Liesack, (2004) Comparative analysis of the conventional and novel pmo (Particulate methane monooxygenase) operons from Methylocystis strain SC2. Appl. Environ. Microbiol. 70: 3055-3063.
  96. Hamamura, N., C.M. Yeager & D.J. Arp, (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl. Environ. Microbiol. 67: 4992-4998.
  97. Stoecker, K., B. Bendinger, B. Schoning, P.H. Nielsen, J.L. Nielsen, C. Baranyi, E.R. Toenshoff, H. Daims & M. Wagner, (2006) Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. U. S. A.103: 2363-2367.
  98. Redmond, M.C. & D.L. Valentine, (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Proc. Natl. Acad. Sci. U. S. A. 109: 20292-20297.
  99. Maier, R.J., N.E.R. Campbell, F.J. Hanus, F.B. Simpson, S.A. Russell & H.J. Evans, (1978) Expression of Hydrogenase Activity in Free-Living Rhizobium-Japonicum. Proceedings of the National Proc. Natl. Acad. Sci. U. S. A. 75: 3258-3262.
  100. Krause, S., C. Lüke & P. Frenzel, (2010) Succession of methanotrophs in oxygen-methane counter- gradients of flooded rice paddies. ISME J. 4: 1603-1607.
  101. Cheng, Y.Q., L.Z. Yang, Z.H. Cao, E. Ci & S.X. Yin, (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151: 31- 41.
  102. Kolbl, A., P. Schad, R. Jahn, W. Amelung, A. Bannert, Z.H. Cao, S. Fiedler, K. Kalbitz, E. Lehndorff, C. Muller-Niggemann, M. Schloter, L. Schwark, V. Vogelsang, L. Wissing & I. Kogel-Knabner, (2014) Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 228: 67-89.
  103. Reay, D.S., S. Radajewski, J.C. Murrell, N. McNamara & D.B. Nedwell, (2001) Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biol. Biochem. 33: 1613-1623.
  104. Modin, O., K. Fukushi & K. Yamamoto, (2007) Denitrification with methane as external carbon source. Water Res. 41: 2726-2738.
  105. van der Ha, D., B. Bundervoet, W. Verstraete & N. Boon, (2011) A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45: 2845-2854.
  106. Tassi, F., G. Montegrossi, O. Vaselli, C. Liccioli, S. Moretti & B. Nisi, (2009) Degradation of C2-C15 volatile organic compounds in a landfill cover soil. Sci. Total. Environ. 407: 4513-4525.
  107. Conrad, R., (2007) Microbial ecology of methanogens and methanotrophs. Adv. Agro. 96: 1-63.
  108. Kloos, K., J.C. Munch & M. Schloter, (2006) A new method for the detection of alkane- monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J. Microbiol. Methods. 66: 486-496.
  109. Stock, M., S. Hoefman, F.M. Kerckhof, N. Boon, P. De Vos, B. De Baets, K. Heylen & W. Waegeman, (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res. Microbiol. 164: 1045-1054.
  110. van Beilen, J.B. & E.G. Funhoff, (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr. Opin. Biotechnol. 16: 308-314.
  111. Nicol, G.W. & C. Schleper, (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends microbiol. 14: 207-212.
  112. Malashenko, Y., I. Sokolov & V. Romanovskaya, (2000) Role of monooxygenase reaction during assimilation of non growth substrates by methanotrophs. J. Mol. Catal. B.Enzym. 10: 305- 312.
  113. Jeong, S.Y., K. Cho & T.G. Kim, (2014) Density-dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non methanotrophic bacterium Sphingopyxis sp. Biotech. Rep. 4: 128-133.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten