Publikationsserver der Universitätsbibliothek Marburg

Titel:Gutzwiller variational wave function for a two-orbitalHubbard model on a square lattice
Autor:zu Münster, Kevin
Weitere Beteiligte: Gebhard, Florian (Prof. Dr.)
Erscheinungsjahr:2015
URI:http://archiv.ub.uni-marburg.de/diss/z2015/0340
DOI: https://doi.org/10.17192/z2015.0340
URN: urn:nbn:de:hebis:04-z2015-03408
DDC:530 Physik
Titel(trans.):Gutzwiller-Variationswellenfunktion für ein Zweiband-Hubbard-Modell auf einem quadratischen Gitter

Dokument

Schlagwörter:
Fermi surface deformations, diagrammatische Entwicklung, stark korrelierte Systeme, diagrammatische Entwicklung, diagrammatic expansion, Gutzwiller, Deformation der Fermi-Fläche, stark korrelierte Systeme, strongly-correlated, Hubbard-Modell, Gutzwiller, Deformation der Fermi-Fläche, Hubbard-Modell, Gutzwiller, multi-band Hubbard model

Summary:
In dieser Arbeit wird ein Zweiband-Hubbard-Modell mit px-py symmetrischen Orbitalen auf einem qudratischen Gitter untersucht. Dabei wird mit Hilfe der Gutzwiller-Variationswellenfunktion der Grundzustand des Systems angenähert. Die Gutzwiller-Variationswellenfunktion baut auf einem Grundzustand eines Systems unabhängiger Teilchen auf, die sich frei im Gitter bewegen können. Dieser Grundzustand besteht aus einer Linearkombination von Zuständen, in denen sich die Teilchen statistisch über alle Gitterplätze verteilen. Um jedoch energetisch ungünstige Zustände mit vielen Mehrfachbesetzungen zu vermeiden, wird mit Hilfe des Gutzwiller-Korrelators das Gewicht dieser Zustände reduziert. Dadurch werden lokale Korrelationen in die Wellenfunktion eingebaut. In einem weiteren Schritt wird der zu Grunde gelegte Einteilchengrundzustand optimiert. Die Gutzwillerwellenfunktion wird durch eine diagrammatische Entwicklung ausgewertet. Diese Entwicklung ähnelt der allgemein bekannten diagrammatischen Entwicklung der Green-Funktionen in der Festkörperphysik. Im Spezialfall eines unendlich-dimensionalen Gitters ergibt sich, dass sämtliche nicht trivialen Diagramme aufgrund des Skalenverhaltens der Einteilchendichtematrix verschwinden. Allerdings vernachlässigt dieser Zugang wichtige Korrelationseffekte der Dichtematrix. Für die Anwendung auf ein endlich-dimensionales System müssen sämtliche Diagramme in Betracht gezogen werden. Daher wird die diagrammatische Entwicklung für ein Multi-Band-Modell in endlichen Dimensionen hergeleitet und auf ein Zweiband-Modell auf einem quadratischem Gitter angewendet. Ein Vergleich mit der Hartree-Fock-Theorie zeigt, dass die Gutzwiller-Wellenfunktion erst bei weitaus größeren Wechselwirkungen magnetisch wird. Zudem lässt sich erkennen, dass sich der Bereich, in dem ein ungesättigter Magnetismus auftritt, auf einen viel größeren Parameterbereich erstreckt. Dies lässt zum Beispiel einen einfacheren Abgleich der Modellparameter des Hubbard-Modells an experimentelle Daten zu. Die Deformationen der Fermifläche treten in dem Bereich auf, in dem die potentielle Energie von derselben Größenordnung wie die kinetische Energie ist. Die stärksten Deformationen können in der Nähe halber Bandfüllung beobachten werden. Es zeigt sich, dass die Deformationen sogar zu einer Änderung der Topologie der Fermifläche führen können. So wird gezeigt, dass die Korrelationen starken Einfluss auf die Form der Fermifläche nehmen können. Die optimierte Fermifläche kann zum Beispiel als Ausgangspunkt für eine Fermiflüssigkeitstheorie verwendet werden.

Zusammenfassung:
In this work, we employ the Gutzwiller wave function approach, to approximate the ground-state of a Hubbard model with px-py orbitals on a square lattice. The Gutzwiller variational ground state starts from the independent-particle picture where the electrons are distributed over all lattice sites to optimize the kinetic energy. This statistical distribution leads to atomic configurations that are energetically unfavorable for the Hubbard interaction. In the Gutzwiller wave function, the weight of such configurations is reduced with the help of the Gutzwiller correlator. In this way, we can include local correlations into the ground state of the noninteracting system. As in standard many-body theory, the evaluation of expectation values requires the calculation of diagrams to infinite order. The Gutzwiller correlator permits the setup of a diagrammatic formalism in such a way that, in the infinite dimensional limit, the scaling of the single-particle density matrix leads to a cancellation of all nontrivial diagrams. However, the evaluation of the action of the Gutzwiller correlator in infinite dimensions neglects important spatial correlations of the density matrix. Therefore, we derive the diagrammatic expansion of a general multi-band model in finite dimensions. In finite dimensions, the evaluation of the Gutzwiller wave function on a square lattice requires the evaluation of all diagrams. We compute the ground-state energy up to and including two internal vertices. As applications, we adress (i) the ferromagnetic phase transitions as a function of the band-filling, and (ii) the Fermi surface deformations induced by the interaction. We confirm preliminary findings that ferromagnetism is a phenomena of strongly correlated electrons. In the Gutzwiller wave function, the ferromagnetic order is strongly suppressed so that much larger interaction strength are needed than predicted by the Hartree-Fock solution. Moreover, the regions in parameter space where non-saturated ferromagnetism occurs are much broader in Gutzwiller theory. Moreover, we find that correlation-induced deformations of the Fermi surface can be substantial and that they can even change the Fermi surface topology. This shows that a simple application of the Fermi liquid theory or any other theory which starts from the noninteracting Fermi surface will not be suitable to describe the system properly.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten