Publikationsserver der Universitätsbibliothek Marburg

Titel:Welche Hydroxycinnamoyltransferasen sind in Coleus blumei und in Glechoma hederacea nachweisbar und worin besteht der Einfluss von Ozon auf Melissa officinalis?
Autor:Döring, Anne Sarah
Weitere Beteiligte: Petersen, Maike (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0049
URN: urn:nbn:de:hebis:04-z2014-00491
DOI: https://doi.org/10.17192/z2014.0049
DDC:570 Biowissenschaften, Biologie
Titel(trans.):Which hydroxycinnamoyltransferase can be detected in Coleus blumei and Glechoma hederacea and how sensitive is Melissa officinalis to low ozone concentrations?
Publikationsdatum:2014-01-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
secondary metabolism, Melissa officinalis, Zitronenmelisse, Sekundärstoffwechsel, rosmarinic acid, Buntnessel, Ozon, ozone, Rosmarinsäure, Coleus blumei

Zusammenfassung:
Hydroxyzimtsäureester und -amide, z.B. Hydroxycinnamoylchinat, Hydroxycinnamoylshikimat, Hydroxycinnamoyltyramin und Rosmarinsäure, sind im Pflanzenreich sehr weit verbreitet. Pflanzen synthetisieren diese Stoffe zur Abwehr gegen Bakterien oder Pilze, nutzen sie aber auch als UV-Schutz. Die Rosmarinsäuresynthase (RAS, Hydroxy-cinnamoylCoA:Hydroxyphenyllactat Hydroxycinnamoyltransferase) ist für die Biosynthese der Rosmarinsäure (RA), einem wichtigen phenolischen Inhaltsstoff der Buntnessel (Coleus blumei), essentiell. Zur Kristallisation und Strukturanalysen des RAS-Proteins wurde RAS-cDNA heterolog in E. coli exprimiert. Da das Protein hauptsächlich in inclusion bodies vorliegt, wurde eine Rückfaltung und Resolubilisierung durchgeführt. Auf Grund der geringen Aktivität wurde das RAS-Protein in SoluBL21TM E. coli-Zellen heterolog exprimiert. Nach Aufreinigung durch Gelpermeationschromatographie konnte aktives, sauberes Protein für Kristallisationsversuche verwendet werden. Es erfolgte jedoch kein Kristallwachstum. RAS, HST (Hydroxycinnamoyl-CoA:Shikimat Hydroxycinnamoyltransferase), die zur Bildung von Lignanen und Monolignolen wichtig ist, und HQT (Hydroxycinnamoyl-CoA:Chinat Hydroxycinnamoyltransferase), ein Enzym der Chlorogensäure (CA)-Biosynthese, sind wichtige Vertreter der Hydroxycinnamoyltransferasen (HCTs). Ein Ziel dieser Arbeit war die Charakterisierung verschiedener HCTs in dem Efeublättrigen Gundermann (Glechoma hederacea). Die krautige, mehrjährige Pflanze ist in Europa, Asien und Amerika beheimatet und kann als interessantes Untersuchungsobjekt angesehen werden, da sie RA, CA und Kaffeesäure akkumuliert. Eine partielle cDNA-Sequenz, die möglicherweise für eine Hydroxycinnamoyl-CoA:Shikimat/Chinat Hydroxycinnamoyltransferase kodiert, konnte aus Glechoma herderacea isoliert werden. Außerdem wurden die RA-, CA- und Kaffeesäuregehalte, sowie die Transkriptmenge der RAS, HST und einer unbekannten HCT in Blättern, Blüten, Stängeln und Wurzeln bestimmt. Die untersuchten Transkripte konnten in allen Organen, außer in Wurzeln, nachgewiesen werden. Die Blüten akkumulierten 12,5% RA, während der Gehalt in Blättern, Stängeln und Wurzeln bei etwa 1% lag. Darüber hinaus wurde die Akkumulation der CA, RA und Kaffeesäure und außerdem die spezifische Aktivitäten der RAS und der Phenylalanin Ammoniak-Lyase (PAL) in einer Suspensionskultur von Glechoma hederacea bestimmt. Während des Untersuchungszeitraums von 14 Tagen wurden Wachstums- und Mediumsparameter, sowie der Sekundärmetabolismus untersucht. Die maximale PAL-Aktivität konnte an Tag 5 und die maximale RAS-Aktivität an Tag 8 bestimmt werden. RA war im Vergleich mit den anderen Sekundärmetaboliten mit fast 26% an Tag 7 am stärksten vertreten. In einem anderen Projekt wurden die spezifische Aktivität und Substratspezifität von bereits konstruierten CbRAS/HST- und CbHST/RAS-Chimären analysiert. Die Kristallstrukturanalyse verschiedener HCTs zeigt, dass sie aus zwei ungefähr gleich großen Domänen aufgebaut sind. Durch den Austausch der beiden Domänen konnten die Chimären synthetisiert werden. Die Aktivitätstests zeigten geringe RAS-Aktvität bei beiden Chimären, wohingegen keinerlei HST-Aktivität gemessen werden konnte. Melissa officinalis gehört wie die beiden vorher erwähnten Pflanzen zur Familie der Lamiaceae (Unterfamilie Nepetoideae) und dient aufgrund des Gehalts an ätherischem Öl und Phenolcarbonsäuren als Arzneipflanze. In dieser Arbeit wurde der Einfluss von geringen Ozonkonzentrationen auf den Primär- und Sekundärstoffwechsel untersucht. Die Melissenpflanzen wurden geringen Ozonkonzentrationen (80 ppb, 5 h) ausgesetzt, da verschiedene Studien gezeigt haben, dass erhöhte Hintergrundkonzentrationen genauso schädlich wie Ozonspitzenkonzentrationen sein können. Die Probenahme erfolgte 0, 3, 5, 12 und 24 h nach Beginn der Ozon-Begasung. Es wurden Änderungen der photosynthetischen Funktionen bestimmt, außerdem wurden ökophysiologische, biochemische und strukturelle Parameter untersucht. Nach Ende der Begasungsperiode konnten makroskopisch keinerlei Schäden erkannt werden, doch auf mikroskopischer Ebene zeigten sich nekrotische Bereiche in den Blättern. Auch wurden die photosynthetischen Funktionen stark beeinflusst. Verschiedene Enzyme, z.B. PAL, Hydroxyzimtsäure:Coenzym A Ligase (4CL), Tyrosin Aminotransferase (TAT) und RAS, sind an der Biosynthese der RA beteiligt. Durch quantitative Real-time-PCR wurden die Transkriptionslevel dieser Gene in Melissa officinalis untersucht. Es erfolgte eine schnelle Hochregulierung aller Gene, aber 24 h nach Beginn der Ozon-Begasung waren nur noch RAS und PAL hochreguliert. Die spezifische Aktivität der RAS korrelierte mit einem Absinken des RA-Gehalts, wohingegen die PAL-Aktivität einen Anstieg um 163% nach 12 h aufwies. In einem zweiten Begasungsexperiment unter den gleichen Bedingungen wurden antioxidative Effekte in der Zitronenmelisse untersucht. Die Probenahme erfolgte 0, 3, 5, 12, 24 und 48 h nach Beginn der Ozon-Begasung. Es konnten ein signifikanter Anstieg an Ascorbat, Dehydroascorbat und Gesamtascorbat, sowie ein biphasischer Verlauf des Redoxstatus festgestellt werden. Ein hohes Radikalfängerpotential korrelierte mit einem hohen Gesamtgehalt an phenolischen Verbindungen und einem hohen Carotinoidgehalt. Außerdem stiegen der Gehalt an Wasserstoffperoxid und Prolin. Die Bestimmung der Katalaseaktivität zeigte einen biphasischen Verlauf mit einem Anstieg nach 5 h und einem Abfall nach 48 h. Zusammenfassend verdeutlichen diese Ergebnisse den Einfluss von Ozonstress auf die Arzneipflanze Melissa officinalis.

Summary:
Hydroxycinnamic esters and amides e.g. hydroxycinnamoylquinate, hydroxycinnamoyl-shikimate, hydroxycinnamoyltyramine and rosmarinate are quite abundant in the plant kingdom. Plants can use these compounds as defense strategies against herbivores, pathogens or UV-irradiation. Rosmarinic acid synthase (RAS, 4-coumaroyl-CoA:hydroxyl-phenyllactic acid hydroxycinnamoyltransferase) is an important enzyme in the formation of rosmarinic acid (RA), the main phenolic compound in Coleus blumei. For structural analyses of RAS, the RAS-cDNA was heterologously expressed in Escherichia coli. The protein was mostly found as insoluble inclusion bodies. After solubilization and refolding of CbRAS, the protein was insufficiently active. So the expression was performed with SoluBL21TM E. coli and after purification by gel permeation chromatography, very active and pure protein could be used for crystallization. Unfortunately no crystals were growing. RAS, HST (hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase), which is important for the formation of monolignols, and HQT (hydroxycinnamoyl-CoA:quinate hydroxyl¬cinnamoyltransferase), a compound essential for the formation of chlorogenic acid (CA), are important members of the hydroxycinnamoyltransferases (HCTs). The cloning and characterization of these HCTs present in Glechoma hederacea was an objective of this study. Glechoma hederacea L. (Lamiaceae) is a perennial plant, which is distributed widely in Europe, Asia and America and an ideal candidate, because it produces RA, CA and caffeic acid. By several attempts a partial sequence putatively encoding a HSCQT was isolated from Glechoma hederacea. Additionally, the presence of caffeic acid, CA, RA and the transcript abundances of RAS, HST and an unknown HCT in flowers, leaves, stems and roots of naturally grown G. hederacea were determined. The RAS, HST and HCT genes were expressed in all organs apart from roots. Flowers accumulated astonishingly 12.5% RA in their dry mass and leaves, stems and roots around 1%. In another part of this project the accumulation of caffeic acid, CA and RA and the determination of RAS and phenylalanine ammonia-lyase (PAL) activities in a suspension culture of Glechoma hederacea was studied. Growth, medium and secondary metabolism parameters were assessed during a cultivation period of 14 days. The maximum PAL activity was observed on day 5, while the maximum of the RAS activity was accomplished on day 8. The main caffeic acid derivative definitely was RA, which reached 25.9% of the dry mass on day 7. This is among the highest level of a secondary metabolite in plant cells ever observed. The activity and substrate acceptance of already constructed chimeric proteins consisting of RAS and HST halves (CbRAS/HST, CbHST/RAS) were determined. The assumption is that hydroxycinnamoyltransferases are formed by two almost equally sized domains I and II. The chimeras were designed by exchanging the two main domains of RAS and HST, which is important for the formation of monolignols. RAS and HST activity assays revealed low RAS-activities in both chimeric proteins while HST activity could not be detected. Lemon balm (Melissa officinalis) is a commonly used medicinal plant, which belongs to the family Lamiaceae (subfamily Nepetoideae). The pharmaceutical properties are e.g. sedative, carminative, spasmolytic, antibacterial and antiviral mostly due to the content of essential oil (citral, citronellal) and phenolic acid esters. The influence of low ozone concentrations on primary and secondary metabolism of lemon balm was studied. Melissa plants were exposed to low ozone (O3) dosages (80 ppb for 5 h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Samples were taken 0, 3, 5, 12 and 24 h from beginning of exposure (FBE). The influence on different ecophysiological, biochemical and structural parameters were analyzed. At the end of the ozone exposure, no visible foliar symptoms were detectable, but at microscopic level a small number of dead cells were found. Nevertheless several photosynthetic reactions were significantly affected. Several enzymes are responsible for the biosynthesis of RA, among them PAL, 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and RAS. The transcript levels of these genes have been investigated by quantitative RT-PCR in lemon balm. All analyzed genes were quickly up-regulated at 3 h of O3 exposure, but at 24 h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease in RA content, while the specific activity of PAL increased at 12 h FBE to 163% in comparison to control levels. In a second treatment with 80 ppb ozone for 5 h the antioxidant effects of Melissa officinalis were assessed. Sampling took place 0, 3, 5, 12, 24 and 48 h FBE. A significant increase of ascorbate, dehydroascorbate, total ascorbate 48 h FBE and a biphasic redox status was measured. Strong scavenging capacities, measured with the DPPH assay, were correlating with a high content of total phenols and carotenoids. Furthermore the hydrogen peroxide and proline contents also increased significantly 48 h FBE. The catalase activtity showed a biphasic trend with an increase 5 h FBE and a decrease 48 h FBE. In conclusion these experiments provide insight into the effect of abiotic stress caused by ozone on the pharmaceutically important plant Melissa officinalis.

Bibliographie / References

  1. Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119S-1124S
  2. Tarpley MM, Wink DA, Grisham MB (2004) Methods for detection of reactive Metabolites of Oxygen and Nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431-R444
  3. Overmyer K, Kollist H, Tuominen H (2008) Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants. Plant Cell Environ 31:1237-1249
  4. Manach C, Scalbert A, Morand C, Rémésy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727-747
  5. Stürzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B 130:281-289
  6. Maccarrone M, Veldink GA, Vliegenthart JFG, Finazzi Agrò A (1997) Ozone stress modulates amine oxidase and lipoxygenase expression in lentil (Lens culinaris) seedlings. FEBS Lett 408:241-244
  7. Pääkkönen E, Günthardt-Goerg MS, Halopainen T (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Ann Bot 82:49-59
  8. Serazin-Leroy V, Denis-Henriot D, Morot M, de Mazancourt P, Giudicelli Y (1998) Semi- quantitative RT-PCR for comparison of mRNAs in cells with different amounts of housekeeping gene transcripts. Mol Cell Probes 12:283-291
  9. Staheli JP, Boyce R, Kovarik D, Rose TM (2011) CODEHOP PCR and CODEHOP PCR Primer Design. Meth Mol Biol 687:57-73
  10. Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Fut 10:756-757
  11. Petersen M, Häusler E, Meinhard J, Karwatzki B, Gertlowski C (1994) The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tiss Org Cult 38:171- 179
  12. Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387
  13. Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585-586
  14. Tenhunen J, Yocum C, Gates D (1976) Development of a photosynthesis model with an emphasis on ecological applications. I. Theory, Oecologia 26:69-100
  15. Pellegrini E, Trivellini A, Campanella A, Francini A, Lorenzini G, Nali C, Vernieri P (2013) Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. Plant Cell Rep DOI 10.1007/s00299-013-1508-0
  16. Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485-489
  17. Weitzel C, Petersen M (2010) Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. Planta 232:731-742
  18. Landmann C, Hücherig S, Fink B, Hoffmann T, Dittlein D, Coiner HA, Schwab W (2011) Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.). Planta 234:305-320
  19. Richet N, Tozo K, Afif D, Banvoy J, Legay S, Dizengremel P, Cabané M (2012) The response to daylight or continuous ozone on phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 236:727-737
  20. Petersen M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12:207-227
  21. Sykłowska-Baranek K, Pietrosiuk A, Naliwajski MR, Kawiak A, Jeziorek M, Wyderska S, Łojkowska E, Chinou I (2012) Effect of L-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol Plant 48:555-564
  22. Loschen G, Azzi A, Righter C, Flohe L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68-72
  23. Merfort I (1992) Caffeoylquinic acids from flowers of Arnica montana and Arnica chamossonis. Phytochemistry 31:2111-2113
  24. Vokou D, Kokkini S, Bessiere JM (1993) Geographic variations of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem Syst Ecol 21:287-295
  25. Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247-2257
  26. Kim J, Song S, Lee I, Kim Y, Yoo I, Ryoo I, Bae K (2011) Anti-inflammatory activity of constituents from Glechoma hederacea var. longituba. Bioorg Med Chem Lett 21:3483- 3487
  27. Martins EN, Pessano NT, Leal L, Roos DH, Folmer V, Puntel GO (2012) Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res Bull 87:74-79
  28. Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433-441
  29. Lomonte C, Sgherri C, Baker AJM, Kolev SD, Navari-Izzo F (2010) Antioxidative response of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9-16
  30. Pellegrini E, Francini A, Lorenzini G, Nali C (2011a) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217-226
  31. Pellegrini E, Carucci MG, Campanella A, Lorenzini G, Nali C (2011b) Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environ Exp Bot 73:94-101
  32. Novak K, Schaub M, Fuhrer J, Skelly JM, Hug C, Landolt W, Bleuler P, Kräuchi N (2005) Seasonal trends in reduced leaf gas exchange and ozone induced foliar injury in three ozone sensitive woody plant species. Environ Poll 136:33-45
  33. Nagendra-Prasad D, Sudhakar N, Murugesan K, Mohan N (2008) Pre-exposure of calli to ozone promotes tolerance of regenerated Lycopersicon esculentum cv. PKM1 plantlets against acute ozone stress. J Plant Physiol 165:1288-1299
  34. Oh M, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaption and stress tolerance in lettuce. J Plant Physiol 166:180-191
  35. Lü S, Fan Y, Liu L, Liu S, Zhang W and Meng Z (2010) Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis. J Plant Physiol 167:1613-1621
  36. Luo H, Chen S, Jiang J, Teng N, Chen Y, Chen F (2012) The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height. J Plant Physiol 169:992–998
  37. Rozpądek P, Slesak I, Cebula S, Waligórski P, Dziurka M, Skoczowski A, Miszalski Z (2013) Ozone fumigation results in accelerated growth and persistent changes in the antioxidant system of Brassica oleracea L. var. capitata f. alba. J Plant Physiol 170:1259-1266
  38. Miladi B, Bouallagui H, Dridi C, El Marjou A, Boeuf G, Di Martino P, Dufour F, Elm'Selmi A (2011) A new tagged-TEV protease: Construction, optimization of production, purification and test activity. Protein Expr Purif 75:75-82
  39. Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521-1529
  40. Weitzel C, Petersen M (2011) Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. Phytochemistry 72:572-578
  41. Vuković R, Bauer N, Curković-Perica M (2013) Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots. Plant Sci 199-200:18-28
  42. Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41-46
  43. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89- 97
  44. Petersen MS (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877-2881
  45. Ranieri A, Petacco F, Castagna A, Soldatini GF (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159-167
  46. Kim KH, Petersen M (2002) cDNA-cloning and functional expression of hydroxyphenyl- pyruvate dioxygenase from cell suspension cultures of Coleus blumei. Plant Sci 163:1001- 1009
  47. Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951-957
  48. Madkour SA, Laurence JA (2002) Egyptian plant species as new ozone indicators. Environ Pollut 120:339-353
  49. Scebba F, Soldatini G, Ranieri A (2003) Ozone differentially affects physiological and biochemical responses of two clover species; Trifolium repens and Trifolium pratense. Environ Poll 123:209-216
  50. Tang Y, Chevone BI, Hess JL (1999) Ozone-responsive proteins in a tolerant and sensitive clone of white clover (Trifolium repens). Environ Pollut 104:89-98
  51. Somers GL, Chappelka AH, Rosseau P, Renfro JR (1998). Empirical evidence of growth decline related to visible ozone injury. Forest Ecol Manag 104:129-137
  52. Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91-120
  53. Zheng Y, Lyon T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38:403-411
  54. Konczak-Islam I, Okuno S, Yoshimoto M, Yamakawa O (2003) Composition of phenolics and anthocyanins in a sweet potato cell suspension culture. Biochem Engin J 14:155-161
  55. Kim YB, Thwe AA, Kim YJ, Li X, Kim HH, Park PB, Suzuki T, Kim SJ, Park SU (2013) Characterization of Genes for a Putative Hydroxycinnamoyl-Coenzyme A Quinate Transferase and p-Coumarate 3'-Hydroxylase and Chlorogenic Acid Accumulation in Tartary Buckwheat. J Agric Food Chem 61:4120-4126
  56. Lelieveld J, Dentener F (2000) What controls tropospheric ozone? J Geophys Res 105: 3531-3551
  57. Noormets A, Sober A, Pell EJ, Dickson RE, Podila GK, Sober J, Isebrands JG, Karnosky DF (2001) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO 2 and O 3 . Plant Cell Environ 24:327-336
  58. Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjarvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst in a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25: 717-726
  59. McKee IF, Eiblmeier M, Polle A (1997) Enhanced ozone-tolerance in wheat grown at an elevated CO 2 concentration: ozone exclusion and detoxification. New Phytol 137:275-284
  60. Paiva S, Russell R (1999) Beta carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426-33
  61. Ness AR, Powles JW (1997) Fruit and vegetables and cardiovascular disease: A review. Int J Epidemiol 26:1-13
  62. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659-668
  63. Vranová, E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1127-1236
  64. Stewart GR, Smith H (1972) Effects of abscisic acid on nucleic acid synthesis and the induction of nitrate reductase in Lemna polyrhiza. J Exp Bot 23:875-885
  65. Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO 2 exchange in the field. J Exp Bot 47:1629-1642
  66. May MJ, Vernoux T, Leaver C, van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649- 667
  67. Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2392-2401
  68. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197-4220
  69. Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63:527-536
  70. Pasqualini S, Reale L, Calderini O, Pagiotti R, Ederli L (2012) Involvement of protein kinases and calcium in the NO-signaling cascade for defence-gene induction in ozonated tobacco plants. J Exp Bot 63:4485-4496
  71. Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763-3766
  72. Takahama U, Hirotsu M, Oniki T (1999) Age-dependent changes in levels of ascorbic acid and chlorogenic acid, and activities of peroxidase and superoxide dismutase in the apoplast of tobacco leaves: mechanism of the oxidation of chlorogenic acid in the apoplast. Plant Cell Physiol 40:716-724
  73. Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350-1357
  74. Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada, H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308
  75. Segasothy M, Phillips PA (1999) Vegetarian diet: panacea for modern lifestyle diseases? Q J Med 92:531-544
  76. Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A (2000) Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol 20:467-475
  77. Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361-367
  78. Lallemand LA, Zubieta C, Lee SG, Wang Y, Acajjaoui S, Timmins J, McSweeney S, Jez JM, McCarthy JG, McCarthy AA (2012b) A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiol 160:249-260
  79. Polle A, Wieser G, Havranek WM (1995) Quantification of ozone flux and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst) at high altitude. Plant Cell Environ 18:681-688
  80. Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environm 28:1021-1036
  81. Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409-425
  82. Šnyrychová I, Ayaydin F, Hideg E (2009). Detecting hydrogen peroxide in leaves in vivo -A comparison of methods. Physiol Plant 135:1-18
  83. Kerstiens G, Lendzian KJ (1989) Interactions between ozone and plant cuticles. I. Ozone deposition and permability. New Phytol 112:13-19
  84. Zhang JX, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361-373
  85. Lissauer D, Piper KP, Moss PA, Kilby MD (2007) Persistence of fetal cells in the mother: friend or foe? BJOG 114:1321-5.
  86. Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764-1767
  87. Kozai M, Sasamori E, Fujihara M, Yamashita T, Taira H, Harasawa R (2009) Growth inhibition of human melanoma cells by a recombinant arginine deiminase expressed in Escherichia coli. J Vet Med Sci 71:1343-1347
  88. Walker AM, Hayes RP, Youn B, Vermerris W, Sattler SE, Kang C (2013) Elucidation of the structure and reaction mechanism of Sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme A-dependent transferases and synthases. Plant Physiol 162:640-651
  89. Sakalauskaitė J, Brazaitytė A, Urbonavičiūtė A, Samuolienė G, Šabajevienė G, Sakalauskienė S, Duchovskis P (2010) Radish plant behaviour under short-term elevated ozone fumigation. Cent Eur J Biol 5:674-681
  90. Shapiro M, Salamouny S El, Shepard BM, Jackson DM (2009b) Plant phenolics as radiation protectants for the beet armyworm (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J Agric Urban Entomol 26:1-10
  91. Nassar SA, El-Ahmady SH, Nassar AH, Al-Azizi MM (2013) Studying the Possible Biotransformation of the Cytotoxic Diterpenoid Paclitaxel Using Jatropha Curcas Cell Suspension Culture. Eur J Med Plants 3:241-253
  92. Pasqualini S, Batini P, Ederli l, Porceddu A, Piccioni C, De Marchis F, Antonielli M (2001) Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant Cell Environ 24:245-252
  93. Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39:79-93
  94. Neill SJ, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388-395
  95. Wells WW, Xu DP (1994) Dehydroascorbate reduction. J Bioenerg Biomembr 26:369-377
  96. MacAlister ED, Myers J (1940) The time course of photosynthesis and fluorescence observed simultaneously. Smithson Misc Collect 99:1–37
  97. Wang SY, Jiao H (2001) Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry. J Agric Food Chem 49:1612
  98. Krupa S, McGrath MT, Andersen CP, Booker F, Burkey KO, Chappelka AH, Chevone BI, Pell EJ, Zilinskas BA (2000) Ambient ozone and plant health. Plant Dis 85:4-12
  99. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290- 4302
  100. Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, Yusa K, Koyota S, Sugiyama T (2012) Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem 76:1877-1883
  101. Pardo Torre JC, Schmidt GW, Paetz C, Reichelt M, Schneider B, Gershenzon J, D'Auria JC (2013) The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca. Phytochemistry 91:177-186
  102. Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576-13583
  103. Stahl E (1888) Pflanzen und Schnecken. Jenaische Zeitschrift f. Naturwissenschaften 22:557-684
  104. Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S (2010) Identification and mapping of genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Sci 179:338-347
  105. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27
  106. Mishra AK, Rai R, Agrawal SB (2013) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system. Indian J Biochem Biophys 50:139-149
  107. Saviranta NMM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO (2010) Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Poll 158:440-446
  108. Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287-291
  109. Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate Referenzen ~ 225 ~ limitations. Bot Rev 51:53-105
  110. Mahesh V, Million-Rousseau R, Ullmann P, Chabrillange N, Bustamante J, Mondolot L, Morant M, Noirot M, Hamon S, de Kochko A, Werck-Reichhart D, Campa C (2007) Referenzen ~ 219 ~ Functional characterization of two p-coumaroyl ester 3'-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145-159
  111. Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L.ssp. pekinensis). Plant Mol Biol Rep 28:597-604
  112. Suhandono S, Hughes J, Brown K, Hughes MA (2001) Expression and structure of an elongation factor-1α gene (MeEF1) from cassava (Manihot esculenta Crantz) Euphytica 120:49-58
  113. Thomas C, Meyer D, Wolff M, Himber C, Alioua M, Steinmetz A (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025-1036
  114. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869-1872
  115. Caf-pHPL, 32: zweite Solubilisierung der Elutionsfraktion, 33: dritte Solubilisierung der Elu- tionsfraktion. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert.
  116. Scotto-Lavino E, Du G, Frohman MA (2006a) 3' end cDNA amplification using classic RACE. Nat Protoc 1:2742-2745.
  117. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034 Vernieri P, Perata P, Bugnoli M, Presentini R, Lorenzi R, Ceccarelli N, Alpi A, Tognoni F (1989) Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. J Plant Physiol 134:441-446
  118. Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro- assay of H 2 O 2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Meth 202:133-141
  119. Pryor WA, Church DF (1991) Aldehydes, hydrogen peroxide and organic radicals as mediators of ozone toxicity. Free Rad Biol Med 11:41-46
  120. Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421-432
  121. Loew O (1900) A new enzyme of general occurrence in organisms. Science 11:701-702
  122. Anhang Curriculum vitae Name: Anne Sarah Döring Geburtsdatum: 14.01.1983
  123. Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9:775-778
  124. Milovanovic M, Zivkovic D, Vucelic-Radovic B (2010) Antioxidant effects of Glechoma hederacea as a food additive. Nat Prod Commun 5:61-63
  125. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161-2168
  126. Rice-Evans CA, Miller J, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152-159
  127. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222-1239
  128. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249-279
  129. Rabinowitch EI (1945) Ascorbic acid in green plants. I. Ascorbic acid in the chloroplasts. In: Photosynthesis, vol. 1: Chemistry of photosynthesis, chemosynthesis and related processes in vitro and in vivo, Interscience Publishers, Inc New York, pp. 269-271
  130. Petersen M, Matern U (2010) Biosynthesis of phenylpropanoids and related compounds. In: Wink M (ed) Annual plant reviews – Biochemistry of plant secondary metabolism. Wiley- Blackwell, Chichester, pp 182-257
  131. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13-25
  132. " Botanik für Pharmazeuten. " von Priv.-Doz. Dr. Thomas Schöpke, Institut für Pharmazie, Ernst-Moritz-Arndt-Universität Greifswald [Stand 05.08.2013, 12:30]. URL: http://www. medizinalpflanzen.de/systematik/6_droge/glecom-h.htm 2. " Botanik für Pharmazeuten. " von Priv.-Doz. Dr. Thomas Schöpke, Institut für Pharmazie, Ernst-Moritz-Arndt-Universität Greifswald [Stand 06.08.2013, 9:30]. URL: http://www. medizinalpflanzen.de/systematik/6_droge/melis-fo.htm 3. " Twenty questions and answers about the ozone layer. " DW Fahey [Stand 10.08.2013, 15:10]. URL: http://ozone.unep.org/Assessment_Panels/SAP/Scientific_Assessment_ 2010/SAP-2010-FAQs-update.pdf
  133. Robiquet, Boutron (1837) Ueber den Kaffee. Ann Pharmacie 23:93-95
  134. Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In: Ort, D.R., Yocum, C.F. (Eds.), Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis.
  135. Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371-3399 IUPAC (1976) Nomenclature of cyclitols. Biochem J 153:23-31
  136. Stöckigt J, Zenk MH (1975) Chemical syntheses and properties of hydroxycinnamoyl- coenzyme A derivatives. Z Naturforsch 30c:352-358
  137. Abbildung 140: HPLC-Chromatogramme der 24 h-RAS-und HST-Enzymtests der RAS-HST-und HST-RAS-Chimären nach Expression in E. coli BL21 (DE3)pLysS: 45: Standard: 0,5 nmol Caf-pHPL, 46: Nullprobe, 47: HST-RAS, 48: RAS-HST, 49: Standard: 0,5 nmol Caf-Shikimat, 50: Nullprobe, 51: HST-RAS, 52: RAS-HST. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 47 48 49
  138. Kühnl T, Koch U, Heller W, Wellmann E (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'- hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226-232
  139. Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978-996
  140. Anhang Abbildung 144: HPLC-Chromatogramme der Bestimmung von Rosmarinsäure-, Chlorogensäure-und Kaffeesäure-Gehalte in Glechoma hederacea: 71: Standard: Rosmarinsäure, 72: Standard: Chloro- gensäure, 73: Standard: Kaffeesäure, 74: Blatt; 75: Blüte, 76: Stängel, 77: Wurzel. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 77
  141. Kautsky H, Apel W, Amann H (1960) Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Die Fluoreszenkurve und die Photochemie der Pflanze. Biochem Zeit 322:277–292
  142. Anhang Abbildung 144: HPLC-Chromatogramme der Bestimmung der RAS-und PAL-Aktivität und der Chlorogensäure-, Rosmarinsäure-und Kaffeesäure-Gehalte in Glechoma hederacea: 78: Nullprobe, 79: Standard: Caf-pHPL, 80: Probe, 81: Nullprobe, 82: Standard: t-Zimtsäure, 83: Probe, 84: Chlorogensäure, 85: Kaffeesäure, 86: Rosmarinsäure, 87: Probe. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 86
  143. Anhang Abbildung 137: HPLC-Chromatogramme der RAS-Enzymtests nach CbRAS-Expression durch SoluBL21 TM aus 100 ml Bakteriensuspension und His-tag-Aufreinigung. Bestimmung des Aktivitäts- maximums der CbRAS-Elutionsfraktion durch verschiedene Konzentrationen: 36: Standard: 0,5 nmol Caf-pHPL, 37: Elutionsfraktion 1:50 verdünnt (5 min Inkubationszeit), 38: Elutionsfraktion 1:10 verdünnt (5 min Inkubationszeit). Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 37
  144. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680‐685 Laisk A, Kull O, Moldau H (1989) Ozone concentration in intercellular air spaces is close to zero. Plant Physiol 90:1163-1167
  145. Rogers R (2008) Coleus -Rainbow Foliage for Containers and Gardens. Timber Press, Portland, Oregon Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified tissues. Plant Mol Biol 5:69‐76 Rohacek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships, Photosynthetica 40:13-29
  146. Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Vitic 16:144-158
  147. Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165-1172
  148. Anhang Abbildung 141: HPLC-Chromatogramme der 4 h-RAS-und HST-Enzymtests der RAS-HST-und HST- RAS-Chimären nach Expression in E. coli BL21 (DE3)pLysS: 53: Standard: 0,5 nmol Caf-pHPL, 54: Nullprobe, 55: RAS-HST, 56: Standard: 0,5 nmol Caf-pHPL, 57: Nullprobe, 58: HST-RAS, 59: Stan- dard: 0,5 nmol Caf-Shikimat, 60: Nullprobe, 61: RAS-HST, 62: Standard: 0,5 nmol Caf-Shikimat, 63: Nullprobe, 64: HST-RAS. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 63
  149. Tintelnot S (2006) Der Einfluss von Abscisinsäure auf die pflanzliche Zellwand: Untersuchung extrazellulärer Proteine beim Laubmoos Physcomitrella patens. Dissertation, Albert-Ludwigs-Universität, Freiburg im Breisgau Tsuchiya J, Yamada T, Niki E, Kamiya Y (1985) Interaction of galvinoxyl radical with ascorbic acid, cysteine and glutathione in homogeneous solution and in aqueous dispersions. Bull Chem Soc Japn 58:326-330
  150. Mülhardt C (2009) "Der Experimentator: Molekularbiologie." 6. Auflage, Spektrum Akademischer Verlag GmbH Heidelberg Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558-1566
  151. Rehm H, Letzel T (2010) " Der Experimentator: Proteinbiochemie/Proteomics. " 6. Auflage, Spektrum Akademischer Verlag GmbH Heidelberg Reich PB (1983) Effects of low concentrations of O 3 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73:291-296
  152. Waterhouse AL (2002) Determination of total phenolics, Handbook of food analytical chemistry, Unit I 1.1: Polyphenolics: p. 464-465, Wiley, New York Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Express Purif 80:283-293
  153. Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.
  154. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 92
  155. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S-2085S Scalbert A, Morand C, Manach C, Rémésy C (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276-282
  156. Studium der Chemie (Diplom) Gymnasium Karlsruhe-Neureut Juli 2002 Abitur Berufstätigkeit: Stadt-Apotheke Hallenberg seit Januar 2011 Nebentätigkeit als Apothekerin Dr. Willmar Schwabe Arzneimittel November 2009 – Mai 2010
  157. Ornstein L (1964) Disc electrophoresis I. background and theory. Ann NY Acad Sci 121:321- 349
  158. Pedersen JA (2000) Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. Biochem Syst Ecol 28:229-253
  159. Lindermayr C, Möllers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J (2002) Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Eur J Biochem 269:1304-1315
  160. Shiga T, Shoji K, Shimada H, Hashida SN, Goto F, Yoshihara T (2009) Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L.. Plant Biotechnol 26:255-259
  161. Niggeweg R, Michael A, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746-754
  162. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007) Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension culture of Echinacea purpurea by the manipulation of incubation temperature and photoperiod. Biochem Eng J 36:301-303
  163. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354
  164. Stöckigt J, Zenk MH (1974) Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme A and quinic acid. FEBS Lett 42:131-134
  165. St Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Rec Adv Phytochem 34:285-315
  166. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663-1679
  167. Litvinenko VI, Popova TP, Simonjan AV, Zoz IG, Sokolov VS (1975) " Gerbstoffe " und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med 27:372-380
  168. Kreuzer KA, Lass U, Landt O, Nitsche A, Laser J, Ellerbrok H, Pauli G, Huhn D, Schmidt CA (1999) Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem 45:297-300
  169. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real- time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907- 2914
  170. Anhang Abbildung 142: HPLC-Chromatogramme der Bestimmung von Dunkel-und Lichtkulturen in Glechoma hederacea: 65: Standard: Chlorogensäure, 66: Standard: Rosmarinsäure, 67: Lichtkultur 7 d, 68: Dunkelkultur 7 d; 69: Lichtkultur 14 d, 70: Dunkelkultur 14 d. Die Standard-und Produktpeaks sind mit einem Pfeil markiert. 69
  171. Anhang Abbildung 135: HPLC-Chromatogramme der RAS-Enzymtests (Inkubationszeit: 5 min) der Elutions- fraktion des Rohextrakts 1 des CbRAS-Proteins aus inclusion bodies nach der zweiten Solubilisierung mit 1x IB Solubilization Buffer: 29: Standard: 0,5 nmol Caf-pHPL, 30: Elutionsfraktion; 31: Standard:
  172. Williamson G, Day AJ, Plumb GW, Couteau D (2000) Human metabolic pathways of dietary flavonoids and hydroxycinnamates. Biochem Soc Trans 28:16-22
  173. Abbildung 132: HPLC-Chromatogramme der RAS-Enzymtests (Inkubationszeit: 15 min) nach Resolubisierung und Rückfaltung mit dem " Protein Refolding and Solubilization Kit " der Firma Nova- gen und Aufreinigung über His-tag-Affinitätschromatographie: 10: Standard: 0,5 nmol Caf-pHPL, 11: Elutionsfraktion 1, 12: Elutionsfraktion 2. Die Produkt-und Standardpeaks sind mit einem Pfeil mar- kiert.
  174. Anhang Abbildung 134: HPLC-Chromatogramme der RAS-Enzymtests (Inkubationszeit: 5 min) nach erneuter Solubilisierung von Rohextrakt 1 des CbRAS-Proteins aus inclusion bodies: 22: Standard: 0,5 nmol Caf-pHPL, 23: Rohextrakt 1 nach einmonatiger Lagerung bei 4 ºC, 24: zweite Solubilisierung mittels 1x IB Solubilization Buffer, 25: zweite Solubilisierung mittels 10x IB Solubilization Buffer, 26: zweite Solubilisierung mittels 10x IB Solubilization Buffer + 4,5 M Harnstoff, 27: Standard: 0,5 nM Caf-pHPL, 28: zweite Solubilisierung mit 100 mM KH 2 PO 4 + 100 mM L-Arginin. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 27 28
  175. Anhang Abbildung 133: HPLC-Chromatogramme der RAS-Enzymtests (Inkubationszeit: 5 min) von vier ver- schiedenen Rohextrakten nach Resolubisierung und Rückfaltung mit dem " Protein Refolding and Solubilization Kit " der Firma Novagen: 13: Standard: 0,5 nmol Caf-pHPL, 14: Nullprobe 1, 15: Roh- extrakt 1, 16: Nullprobe 2, 17: Rohextrakt 2, 18: Nullprobe 3, 19: Rohextrakt 3, 20: Nullprobe 4, 21: Rohextrakt 4. Die Produkt-und Standardpeaks sind mit einem Pfeil markiert. 21 22 23
  176. Oksanen E, Sôber J, Karnosky DF (2001) Interactions of elevated CO 2 and ozone in leaf morphology of aspen (Populus tremuloides) and birch (Betula papyrifera) in aspen FACE experiment. Environ Poll 115:437-446
  177. Scarpati ML, Oriente G (1958) Isolamento e costituzione dell'acido rosmarinico (dal rosmarinus off.). Ric Sci 28:2329-2333
  178. Koch-Heitzmann I, Schultze W (1988) 2000 Jahre Melissa officinalis. Von der Bienenpflanze zum Virustatikum. Z Phytother 9:77-85
  179. Ulbrich B, Wiesner W, Arens H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 293-303
  180. Mainz Approbation Johannes-Gutenberg-Universität April 2004 -April 2009
  181. Mainz Studium der Pharmazie Carl-Engler Schule Karlsruhe Oktober 2003 – April 2004
  182. Payen (1846) Memoire sur le café (3 0 Part). Comptes Rendus 23:244-251
  183. Plumb GW, Garcia-Conesa MT, Kroon PA, Rhodes M, Ridley S, Williamson G (1999) Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J Sci Food Agric 79:390-392
  184. Sander M (2010) Molekularbiologische und biochemische Untersuchungen von Hydroxycinnamoyltransferasen aus Coleus blumei und Glechoma hederacea. Dissertation, Philipps-Universität Marburg Sander M, Petersen M (2011) Distinct substrate specificities and unusual substrate flexibilities of two hydroxycinnamoyl transferases, rosmarinic acid synthase and hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase, from Coleus blumei Benth. Planta 233:1157-1171
  185. Smith HO, Nathans D (1973) Nomenclature for restriction enzymes. J Mol Biol 81:419-423
  186. Schönbein CF (1840) " On the Odour Accompanying Electricity and on the Probability of its Dependence on the Presence of a New Substance. " Philos Mag 17:293-294 Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non photochemical quenching with a new type of modulation fluorimeter. Photosynth Res 10:51-62
  187. Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK (2000) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr Purif 18:182-192
  188. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405- 410
  189. Pryor WA (1986) Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annu Rev Physiol 48:657-667
  190. Paolacci AR, D'Ovidio R, Marabottini R, Nali C, Lorenzini G, Abenavoli MR, Badiani M (2001) Ozone induces a differential accumulation of phenylalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. Aust J Plant Physiol 28:425-428
  191. Sunnen GV (1988) Ozone in Medicine: Overview and Future Directions. J. Adv. Med. 1: 159- 174
  192. Kempin B, Petersen M, Alfermann AW (1993) Partial purification and characterization of tyrosine aminotransferase from cell suspension cultures of Coleus blumei. Planta Med 59 Suppl.:A684 Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three- dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 18:1662- 1666
  193. Ulbrich B, Zenk MH (1979) Partial purification and properties of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry 18:929-933
  194. Payen (1846) Untersuchung des Kaffees. Annalen 60:286-294
  195. Reinhard E (2001) Pharmazeutische Biologie, 6. Auflage, Wissenschaftliche Verlagsgesell- schaft mbH Stuttgart Rettschlag J (2003) Linksventrikuläre Expression verschiedener Housekeeping-Gene bei kardialer Hypertrophie und Herzinsuffizienz. Dissertation, Humboldt-Universität zu Berlin Rhodes MJC, Wooltorton LSC (1976) The enzymatic conversion of hydroxycinnamic acids to p-coumaroyl quinic and chlorogenic acids in tomato. Phytochemistry 15:947-951
  196. Kremer D, Howell RK (1974) Phenylalanine ammonia lyase induced by ozone. Proc Am Phytopath Soc 1:152
  197. Vogt T (2010) Phenylpropanoid biosynthesis. Molecular Plant 3:2-20
  198. Schultes RE, Hofmann A (1992) Plants of the Gods: Their Sacred, Healing and Hallucinogenic Powers. Rochester, VT: Healing Arts Press.
  199. Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K + homeostasis and K + dependent xylogenesis. Plant J 32:997-1009
  200. Lukmanul Hakkim F, Kalyani S, Essa M, Girija S, Song H (2011) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int J Biol Med Res 2:1070-1074
  201. Samaras Y, Bressan RA, Csonka LN, Marcía-Ríos MG, Paino D, Urzo M, Rhodes D, Proline accumulation during drought and salinity, in: N. Smirnoff (Ed.), Environment and Plant Metabolism, Bios Scientific Publishers, Oxford, 1995, pp. 161-187
  202. Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10-14
  203. Villegas RJA, Kojima M (1986) Purification and characterization of Hydroxycinnamoyl D- Glucose/Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. J Biol Chem 261:8729-8733
  204. Lallemand LA, McCarthy JG, McSweeney S, McCarthy AA (2012a) Purification, crystallization and preliminary x-ray diffraction analysis of a hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) from Coffea canephora involved in chlorogenic acid biosynthesis. Acta Cryst F68:824-828
  205. Pell EJ, Pearson NS (1983) Quantity of RuBP-carboxylase in three cultivars of alfalfa stressed by 0 3 . Phytopathol 73:372
  206. Mudd JB, Leavitt R, Ongun A, McManus TT (1969) Reaction of ozone with amino acids and proteins. Atmos Environ 3:669-682
  207. Soret JL (1865) Recherches sur la densité de l'ozone. C R Hebd Seances Acad Sci, Ser C, 61:941
  208. Referenzen ~ 223 ~
  209. Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu K, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424-438
  210. Geburtsort: Schleiz Staatsangehörigkeit: deutsch Familienstand: ledig Bildung: Philipps-Universität Marburg Juli 2010 – Dezember 2013
  211. Sheard LB, Zheng N (2009) Signal advance for abscisic acid. Nature 462:575-576
  212. Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (2002) Strasburger, 35. Auflage Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin Slavkovska V, Jancic R, Milosavljevic S, Djokovic D (1997) Variability of the essential oil composition of the species Satureja montana L. (Labiatae). J Essent Oil Res 9:629-634
  213. Pokalsky AR, Hiatt WR, Ridge N, Rasmussen R, Houck CM, Shewmaker CK (1989) Structure and expression of elongation factor 1 alpha in tomato. Nucleic Acids Res 17:4661-4673
  214. McCarty M, Avery OT (1944) Studies on the chemical nature of the substance inducing transformation of the pneumococcal types. J Exp Med 79:137-158
  215. Ryle AP, Anfinsen CB (1957) Studies on the disulfide bridges in ribonuclease. Biochim Biophys Acta 24:633-635
  216. Thordal-Christensen H, Zhang Z, Wie Y, Collinge DB (1997) Subcellular localization of H 2 O 2 in plants. H 2 O 2 accumulation in papillae and hypersensitive response during the barley- powdery mildew interaction. Plant J 11:1187-1194
  217. Moffatt BA, Studier FW (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49:221-227
  218. Wichtl M (2002) Teedrogen und Phytopharmaka. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart Wilkinson S, Davies WJ (2009) Ozone suppresses soil drying-and abscisic acid (ABA)- induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ 32:949-959
  219. Sumner JB (1927) Textbook of biological chemistry. Macmillan, New York Sun H, Li Y, Feng S, Zou W, Guo K, Fan C, Si S, Peng L (2013) Analysis of five rice 4- coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 430:1151-1156
  220. Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1-17
  221. Takeda R, Hasegawa J, Shinozaki M (1990) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, Anthocerotae (hornworts).
  222. Kelly FJ, Mudway I, Krishna MT, Holgate ST (1995) The free radical basis of air pollution: Focus on ozone. Resp Med 89:647-656
  223. Rubin MB (2001) The history of ozone. The Schönbein period, 1839–1868. Bull Hist Chem 26:40–56
  224. Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV: Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692-2698
  225. Kluwer Academic Publishers, The Netherlands, pp. 539–563
  226. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113-130
  227. Manninen AM, Holopainen T, Lyytikainen BP, Holopainen JK (2000) The role of low-level ozone exposure and mycorrhizas in chemical quality and insect herbivore performance on Scots Pine seedlings. Glob Change Biol 6:111-121
  228. Wagg S, Mills G, Hayes F, Wilkinson S, Davies WJ (2013) Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris. Environ Pollut 175:82-91
  229. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791-795
  230. Soldatini GF, Lorenzini G, Filippi F, Nali C, Guidi L (1998) Photosynthesis of two poplar clones under long-term exposure to ozone. Physiol Plantarum 104:707-712
  231. Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681-689
  232. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291-295
  233. Jakob B, Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves in relation to photoinactivation of photosystems I and II. Plant Cell Physiol 37:629-635
  234. Niegowski SJ (1953) Destruction of phenols by oxidation with ozone. lndustr Eng Chem 45:632-634
  235. Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50:5735-5741
  236. Tuan PA, Park WT, Xu H, Park NI, Park SU (2012) Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60:5945-5951
  237. Kimura Y, Okuda H (1987) Studies on the activities of tannins and related compounds, X. Effects of caffeetannins and related compounds on arachidonate metabolism in human polymorphonuclear leukocytes. J Nat Prod 50:392-399
  238. Mølgaard P, Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in dicotyledons. Phytochemistry 27:2411-2421
  239. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459-481
  240. Olbrich M, Gerstner E, Welzl G, Fleischmann F, Osswald W, Bahnweg G, Ernst D (2008) Quantification of mRNAs and housekeeping gene selection for quantitative real-time RT- PCR normalization in European beech (Fagus sylvatica L) during abiotic and biotic stress. Z Naturforsch 63c:574-582
  241. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646-651
  242. Sonnante G, D'Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C (2010) Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol 153:1-15
  243. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwiss 19:964
  244. Wasson RG (1962) A new Mexican psychotropic drug from the mint family. Botanical Museum Leaflets, Harvard University 20:77-84
  245. Silveira ED, Alves-Ferreira M, Guimarães LA, Silva FR, Carneiro VTC (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9:84
  246. Yamamoto HY (1979) Biochemistry of the violaxanthin cycle. Pure Appl Chem 51:639-648
  247. Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501-504
  248. Wehr L (2002) Untersuchungen zu Proteinaggregationsprozessen mittels dynamischer und elektrophoretischer Lichtstreuung. Digitale Dissertation, FU Berlin Weitzel C (2009) Rosmarinsäure Biosynthese in Suspensionskulturen von Melissa officinalis L. Dissertation, Philipps-Universität Marburg
  249. Wolters S, Neeb M, Berim A, Schulze Wischeler J, Petersen M, Heine A (2013) Structural analysis of coniferyl alcohol 9-O-methyltransferase from Linum nodiflorum reveals a novel active-site environment. Acta Crystallogr D 69:888-900
  250. Newton RJ (1977) Abscisic acid effects on fronds and roots of Lema minor L. Am J Bot 64:45-49
  251. Laborjournal online: Proteinseparation mit Affinitätstags, Teil : Ein Tag, um Großes zu vollbringen von Kay Terpe [Stand 26.08.2013, 15:10]. URL: http://www.laborjournal. de /rubric/methoden/methoden/v50.lasso
  252. Wareing PF (1949) Photoperiodic control of leaf growth and cambial activity in Pinus sylvestris. Nature 163:770
  253. Scotto-Lavino E, Du G, Frohman MA (2006b) 5' end cDNA amplification using classic RACE. Nat Protoc 1:2555-2562
  254. Perata P, Picciarelli P Alpi A (1990) Pattern of variations in abscisic acid content in suspensors, embryos, and integuments of developing Phaseolus coccineus seeds. Plant Physiol 94:1776-1780
  255. Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JW, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801- 1816
  256. Jiménez A, Hernández JA, Río LA del, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275-284
  257. Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105:1089-1096
  258. Ursin VM, Irvine JM, Hiatt WR, Shewmaker CK (1991) Developmental analysis of elongation factor-1 alpha expression in transgenic tobacco. Plant Cell 3:583-591
  259. Rowland F (2006) Stratospheric ozone depletion. Philos T Roy Soc B 361:769-790
  260. Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci USA 104:11856-11861
  261. Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122-1134
  262. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487-491
  263. Kováts N, Áks A, Gölöncsér F, Barabás A (2011) Quantifying of bactericide properties of medicinal plants. Plant Signal Behav 6:777-779
  264. Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci USA 44:98-104
  265. Teraoka M, Nakaso K, Kusumoto C, Katano S, Tajima N, Yamashita A, Zushi T, Ito S, Matsura T (2012) Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J Clin Biochem Nutr 51:122-127
  266. Oliveira AB, Moura CFH, Gomes-Filho E, Marco CA, Urban L, Miranda MRA (2013) The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. PLoS One 8:e56354
  267. Murrill WA, Horton PB, Leiberman E, Newburgh LH (1941) Vitamin A and carotene metabolism in diabetics and normals. J Clin Invest 20:395
  268. Rautenkranz AAF, Li L, Machler F, Martinoia E, Oertli JJ (1994) Transport of ascorbic acid and dehydroascorbic acid across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel). Plant Physiol 106:187-193
  269. Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H. Jr. (1991) Biochemical plant resonses to ozone I: Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 9:882-889
  270. Silva RR, Camara CAG, Almeida AV, Ramos CS (2012) Biotic and abiotic stress induced phenylpropanoids in leaves of the mango (Mangifera indica L., Anacardiaceae). J Brazil Chem Soc 23:206-211
  271. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75:376-386
  272. Sumaryono W, Proksch P, Hartmann T, Nimtz M, Wray V (1991) Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry 30:3267-3271
  273. Krupa SV, Manning WJ (1988) Atmospheric Ozone: formation and effects on vegetation. Environ Pollut 50:101-137
  274. Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radical Biol Med 9:245-265
  275. Ruch W, Cooper PH, Baggiollini M (1983) Assay of H 2 O 2 production by macrophages and neutrophils with homovanillic acid and horseradish peroxidase. J Immunol Meth 63:347- 357
  276. Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2009) Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631-1643
  277. Leitao L, Dizengremel P, Biolley JP (2008) Foliar CO 2 fixation in bean (Phaseolus vulgaris L.) submitted to elevated ozone: Distinct changes in Rubisco and PEPc activities in relation to pigment content. Ecotoxicol Environ Saf 69:531-540
  278. Onandia G, Olsson AK, Barth S, King JS Uddling J (2011) Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environ Poll 159:2350-2354
  279. Sánchez-Campillo M, Gabaldon JA, Castillo J, Benavente-García O, Del Baño MJ, Alcaraz M, Vicente V, Alvarez N, Lozano JA (2009) Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol 47:386-392
  280. Sakihama Y, Cohen MF, Grace SC, Yamasaki H, (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67-80
  281. Zhao M, Wang H, Yang B, Tao H (2010). Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem 120:1138-1142
  282. Karib AA, Ford EF, Wilmshurst EC (1954) Studies on ethidium bromide. V. The treatment of cattle infected with resistand strains of Trypanosoma congolense. J Comp Pathol 64:187- 194
  283. Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Li G, Ye H, Liu B (2011) Foliar Application of Chitosan Activates Artemisinin Biosynthesis in Artemisia annua L.. Ind Crop Prod 1:176- 182
  284. Regelsberger G, Jakopitsch C, Plasser L, Schwaiger H, Furtmüller PG, Peschek GA, Zámocký M, Obinger C (2002) Occurrence and biochemistry of hydroperoxidase in oxygenic phototrophic prokaryotes (cyanobacteria). Plant Physiol Biochem 40:479-490
  285. Kautsky H, Zedlitz W (1941) Fluoreszenzkurven von Chloroplasten-Grana. Naturwiss 29:101-102
  286. Yabuta G, Koizumi Y, Namiki K, Hida M, Namiki M (2001) Structure of green pigment formed by the reaction of caffeic acid esters (or chlorogenic acid) with a primary amino compound. Biosci Biotechnol Biochem 65:2121-2130
  287. Summerfelt ST, Hochheimer JN (1997) Review of ozone processes and applications as an oxidizing agent in aquaculture. Prog Fish-Cult 59:94-105
  288. Setiawan AN, Lokman PM (2010) The use of reference gene selection programs to study the silvering transformation in a freshwater eel Anguilla australis: a cautionary tale. BMC Mol Biol 11:75
  289. Pfaffl MW, Vandesompele J, Kubista M (2009) Data analysis software. In: Logan J, Edwards K, Saunders N, editors. Real-time PCR: Current Technology and Applications. Norfolk: Caister Academic Press, pp 65-84


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten