Publikationsserver der Universitätsbibliothek Marburg

Titel:Genetische und biochemische Analysen zur Regulation der Arp2/3-Komplex vermittelten F-Aktin-Plaque Bildung und Auflösung während der Myoblastenfusion von Drosophila melanogaster
Autor:Trinkewitz, Tatjana
Weitere Beteiligte: Önel, Susanne (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0472
URN: urn:nbn:de:hebis:04-z2013-04725
DOI: https://doi.org/10.17192/z2013.0472
DDC: Biowissenschaften, Biologie
Titel (trans.):Genitical and biochemical analyses to regulation of Arp2/3-complex dependent F-actin plaque formation and dissolution during myoblast fusion
Publikationsdatum:2014-04-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Depolymerisation, Drosophila, plaque dissolution, myoblast fusion, Actin, Myoblastenfusion, actin plaque formation, Zellkontakt, Arp2/3-complex, Scar-complex, Muskulatur, Arp2/3-Komplex, Aktin-Plaque, Polymerisation, Scar-Komplex

Zusammenfassung:
Die Fusion der Myoblasten ist ein fundamentaler Prozess bei der Muskelbildung multizellulärer Organismen. Ein hierfür gut untersuchter Modellorganismus ist Drosophila melanogaster, bei welchem die Bildung der somatischen Muskulatur durch die Fusion von Founderzellen (FCs) und fusionskompetenten Myoblasten (FCMs) vollzogen wird. Das eigentliche Fusionsereignis wird durch das spezifische Erkennen und die Adhäsion der beiden Zellpopulationen mit Hilfe der Transmembranproteine eingeleitet. Anschließend wird das Signal intrazellulär an das Aktin-Zytoskelett weitergeleitet, was die Bildung der Fusionsporen und die Verschmelzung der Membranen zur Folge hat. Dabei wird an der Kontaktstelle der fusionierenden Myoblasten ein Adhäsionsring gebildet, in dessen Mitte sich ein Aktin-reiches Zentrum befindet (Kesper et al., 2007). Lebend-Untersuchungen haben gezeigt, dass sich dieser Aktin-Plaque sehr dynamisch verhält und innerhalb von zwei Minuten seine maximale Größe erreicht. Die Auflösung der Plaques dauert nur eine Minute. Mutantenanalysen zeigen, dass die Arp2/3-abhängige Aktin-Polymerisation essentiell für die Myoblastenfusion ist. Die Dynamik der Aktin-Plaques lässt zudem vermuten, dass die Depolymerisation ebenfalls eine entscheidende Rolle spielt. Um diese F-Aktin-basierten Prozesse genauer zu analysieren, wurden in dieser Arbeit mehrere Ansätze verfolgt. Die Arp2/3-abhängige Aktin-Plaque Bildung wird durch die NPFs Scar/Wave und WASP in FCs und FCMs reguliert. Mutationen in der Scar/Wave- als auch der WASP-abhängigen Arp2/3-Aktivierung resultieren in einer Reduktion der Aktin-Plaques, aber nicht in einem Verlust der Aktin-Plaque Bildung (diese Arbeit, Sens et al., 2010). Es wurde daher in dieser Arbeit nach weiteren Komponenten gesucht, die an der Aktin-Plaque Bildung beteiligt sind, wie z.B. das Aktinmonomer-bindende Protein Profilin/Chic (Chic). Die hier durchgeführten Dosisexperimente und Protein-Interaktionsstudien deuten daraufhin, dass Chic sowohl eine Komponente der Scar/Wave- als auch der WASP-abhängigen Aktin-Polymerisation ist. Des Weiteren konnte in diesem Zusammenhang der Arp2/3-Regulator Ena/VASP als eine mögliche neue Komponente der Arp2/3-vermittelten Aktin-Polymerisation während der Myoblastenfusion und der Muskelanheftung identifiziert werden. Ein weiterer Teil meiner Arbeit befasst sich mit der Aktivierung des Scar-Komplexes während der Myoblastenfusion. Dieser erfolgt durch die kleine Rho GTPase Rac bzw. durch ein Zusammenwirken von Rac mit den Komponenten des pentameren Scar-Komplexes. In Drosophila gibt es drei Rac GTPasen, von denen Rac1 und Rac2 während der Myoblastenfusion redundant wirken. Die Expression der konstitutiv-aktiven und dominant-negativen Konstrukte von Rac1 resultiert in einem starken Fusionsphänotyp. Auch die Doppelmutanten für rac1- und rac2 zeigen unfusionierte Myoblasten. In allen Mutanten konnte ich noch die Bildung von Aktin-Plaques beobachten. Zudem zeigen die in dieser Arbeit durchgeführten biochemischen und genetischen Interaktionsstudien eine Interaktion von Rac mit Chic, Scar/Wave, Sra-1 und Kette. Um Aktivatoren bzw. Inaktivatoren für die beiden Rac GTPasen aufzudecken, wurde unter Verwendung der aktivierten Form von Rac1 und Rac2 ein globaler Hefe-2-Hybrid Screen durchgeführt. Unter den potentiellen Interaktionspartnern für Rac1 während der Myoblastenfusion konnten die Csk-Kinase und das Aktin-bindende Protein WupA identifiziert werden. Der letzte Teil dieser Arbeit befasst sich mit der Suche nach Aktin-depolymerisierenden Komponenten, die am Membranzusammenbruch während der Fusion beteiligt sind. Dabei wurden Mutationen im Depolymerisierungsfaktor Cofilin/Twinstar (Tsr) auf Fusionsstörungen untersucht. Weder homozygote tsr-Mutanten zeigten Defekte in der Fusion der Myoblasten, noch die Expression von aktivierten bzw. inaktiviertem Tsr in Myoblasten. Daraufhin wurde ein weiterer Kofaktor, Aip1/Flare (Flr), bezüglich seiner mRNA-Expression analysiert und Doppelmutantenanalysen mit tsr durchgeführt. Die Lokalisation des flr Transkripts konnte dabei in der embryonalen somatischen Muskulatur nachgewiesen werden, sowie auch in den Ovarien, im Testis und in den Imaginalscheiben. Allerdings zeigen flr-Einzelmutanten keine Muskeldefekte. In tsr;flr-Doppelmutanten konnten jedoch schwache Muskelstörungen beobachtet werden, was auf ein potentielles Zusammenwirken der beiden Proteine während der Muskelbildung hindeutet. Zusammenfassend lässt sich aus diesen Ergebnissen postulieren, dass Tsr in funktioneller Redundanz mit weiteren depolymerisierenden Proteinen wirkt.

Bibliographie / References

  1. Wills Z., Marr L., Zinn K., Goodman C.S., Van Vactor D. (1999) Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron. 22(2):291-9
  2. Lindsley D.L. und Zimm G.G. (1992) The Genome of Drosophila melanogaster. viii + 1133pp 8. LITERATURVERZEICHNIS ___________________________________________________________________ 161
  3. Rothenberg M.E., Rogers S.L., Vale R.D., Jan L.Y., Jan Y.N. (2003) Drosophila pod-1 crosslinks both actin and microtubules and controls the targeting of axons. Neuron. 39(5):779-91.
  4. Xavier M.J. und Williams M.J. (2011) The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells. PLoS One. 6(5):e19504
  5. Lawrence P. A. und Jonston P. (1989) Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even skipped and fushi tarazu. Development. 105, 761-768
  6. Verheyen E.M. und Cooley L. (1994) Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 120(4):717-28
  7. Rushton E., Drysdale R., Abmayr S.M., Michelson A.M., Bate M. (1995) Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development (Camb) 121:1979–1988
  8. Roy S. und VijayRaghavan K. (1997) Homeotic genes and the regulation of myoblast migration, fusion, and fibre-specific gene expression during adult myogenesis in Drosophila. Development. 124(17):3333-41
  9. Papoulas O., Beek S.J., Moseley S.L., McCallum C.M., Sarte M., Shearn A., Tamkun J.W. (1998) The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development. 125(20):3955-66
  10. Kaufmann N., Wills Z.P., Van Vactor D. (1998) Drosophila Rac1 controls motor axon guidance. Development. 125(3):453-61
  11. Sotillos S. und Campuzano S. (2000) DRacGAP, a novel Drosophila gene, inhibits EGFR/Ras signalling in the developing imaginal wing disc. Development. 127(24):5427-38
  12. Strünkelnberg M., Bonengel B., Moda L.M., Hertenstein A., de Couet H.G., Ramos R.G., Fischbach K.F. (2001) rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128:4229-4239
  13. Rau A., Buttgereit D., Holz A., Fetter R., Doberstein S. K., Paululat A., Staudt N., Skeath J., Michelson A.M., Renkawitz-Pohl R. (2001) rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 128: 5061-5073
  14. Ruiz-Gomez M., Coutts N., Suster M.L., Landgraf M., Bate M. (2002) myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila. Development 129:133-141
  15. Sahota V.K., Grau B.F., Mansilla A., Ferrús A. (2009) Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci. 122(Pt 15):2623-31
  16. Schneider I. (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 27(2):353-65
  17. Kunda P., Craig G., Dominguez V., Baum B.(2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol. 13(21):1867-75
  18. Ogawa W., Kasuga M. (1996) Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem Biophys Res Commun. 219(2):509-14
  19. Wills Z., Emerson M., Rusch J., Bikoff J., Baum B., Perrimon N., Van Vactor D. (2002) A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding. Neuron. 36(4):611-22
  20. Tsou C., Prasad V., Stahl P.D., Waksman G., Cheney C.M. (2001) Drosophila rab GDI mutants disrupt development but have normal Rab membrane extraction. Genesis. 31(1):17-29
  21. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic- adhesive structure (FuRMAS). Dev. Dyn. 236: 404-415
  22. Önel S. und Renkawitz-Pohl R. (2009) FuRMAS: Triggering myoblast fusion in Drosophila. Developmental Dynamics 238:1513-1525
  23. Wright T. R. F. (1960) The phenogenetics of the embryonic mutant, lethal myospheroid, in Drosophila melanogaster. J. Exp. Zool. 143, 77-99
  24. Kim Y.S., Furman S., Sink H., VanBerkum M.F. (2001) Calmodulin and profilin coregulate axon outgrowth in Drosophila. J Neurobiol. 47(1):26-38
  25. Ranganayakulu G., Schulz R.A., Olson E.N. (1996) Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev Biol. 176(1):143-8
  26. Tal T., Vaizel-Ohayon D., Schejter E.D. (2002) Conserved interactions with cytoskeletal but not signaling elements are an essential aspect of Drosophila WASp function. Dev Biol. 243(2):260-71
  27. Sun H.Q., Kwiatkowska K., Yin H.L. (1995) Actin monomer binding proteins. Curr Opin Cell Biol. 7(1):102-10
  28. Massarwa R., Carmon S., Shilo B. und Schejter E. D. (2007) WIP/WASp-based Actin-Polymerization Machinery is essential for Myoblast Fusion in Drosophila. Developmental Cell 12, 557–569
  29. Lindberg U., Karlsson R. (2008) Actin is where it's at. Semin Cancer Biol. 18(1):1
  30. Schenck A., Qurashi A., Carrera P., Bardoni B., Diebold C., Schejter E., Mandel J.L., Giangrande A.(2004) WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Dev Biol. 274(2):260-70
  31. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila.
  32. Susic-Jung L., Hornbruch-Freitag C., Kuckwa J., Rexer K.H., Lammel U., Renkawitz-Pohl R. (2012) Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster. Dev Biol. 370(1):86-97
  33. Kim M.D., Kamiyama D., Kolodziej P., Hing H., Chiba A. (2003) Isolation of Rho GTPase effector pathways during axon development. Dev Biol. Oct 15;262(2):282-93.
  34. Liebl E.C., Forsthoefel D.J., Franco L.S., Sample S.H., Hess J.E., Cowger J.A., Chandler M.P., Shupert A.M., Seeger M.A. (2000) Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio's role in axon pathfinding. Neuron. 26(1):107-18
  35. Mohler W.A., Simske J.S., Williams-Masson E.M., Hardin J.D., White J.G. (1998) Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr Biol. 8(19):1087-90
  36. (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol. 5(7):599-609
  37. Rossman K.L., Der C.J., Sondek J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 6(2):167-80
  38. Singh J., Aaronson S.A., Mlodzik M. (2010) Drosophila Abelson kinase mediates cell invasion and proliferation through two distinct MAPK pathways. Oncogene. 29(28):4033-45
  39. Okada K., Blanchoin L., Abe H., Chen H., Pollard T.D., Bamburg J.R. (2002) Xenopus actin- interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. J Biol Chem. Nov 8;277(45):43011-6
  40. Li H., Lemay S., Aoudjit L., Kawachi H., Takano T. (2004) SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol. 15(12):3006-15
  41. Van Aelst L. und D'Souza-Schorey C. (1997) Rho GTPases and signaling networks. Genes Dev. 11(18):2295-322
  42. Rappleye C.A., Paredez A.R., Smith C.W., McDonald K.L., Aroian R.V. (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode caenorhabditis elegans. Genes Dev. 13(21):2838-51
  43. Falileeva L., Dickson B.J., Samakovlis C. (2004) Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev. 18(17):2161-71
  44. Luo L., Liao Y.J., Jan L.Y., Jan Y.N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8(15):1787-802
  45. Robinson R.C., Turbedsky K., Kaiser D.A., Marchand J.B., Higgs H.N., Choe S., Pollard T.D. (2001) Crystal structure of Arp2/3 complex. Science. 294(5547):1679-84
  46. Pollard T. (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36: 451-77
  47. Murakami S., Umetsu D., Maeyama Y., Sato M., Yoshida S., Tabata T. (2007) Focal adhesion kinase controls morphogenesis of the Drosophila optic stalk. Development. 134(8):1539-48 Epub 2007 Mar 14
  48. Schröter R.H., Lier S., Holz A., Bogdan S., Klämbt C., Beck L., Renkawitz-Pohl R. (2004) kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development 131: 4501-4509
  49. Shelton C., Kocherlakota K.S., Zhuang S., Abmayr S.M. (2009) The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development 136: 1159-1168
  50. (2009) Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis.
  51. Moseley J.B., Okada K., Balcer H.I., Kovar D.R., Pollard T.D., Goode B.L. (2006) Twinfilin is an actin- filament-severing protein and promotes rapid turnover of actin structures in vivo. J Cell Sci. 119(Pt 8):1547-57
  52. Wang D., Zhang L., Zhao G., Wahlström G., Heino T.I., Chen J., Zhang Y.Q. (2010) Drosophila twinfilin is required for cell migration and synaptic endocytosis. J Cell Sci. 123(Pt 9):1546-56
  53. Kaipa B.R., Shao H., Schäfer G., Trinkewitz T., Groth V., Liu J., Beck L., Abmayr S.M., Önel S.F. (2013) Dock mediates Scar-and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts. J Cell Sci. Sep 19
  54. Rubin G.M. und Spradling A.C. (1982) Genetic transformation of Drosophila with transposable element vectors. Science. 218(4570):348-53
  55. Tautz D. und Pfeifle C. (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Springer Verlag, Berlin/ Heidelberg
  56. Azaryan A., Radolf M., Stark A., Keleman K., Dickson B.J. (2010) Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature. 464(7286):287-91
  57. Krause M., Sechi A.S., Konradt M., Monner D., Gertler F.B., Wehland J. (2000) Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol. 149(1):181-94
  58. Moriyama K., Yahara I. (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci. 115(Pt 8):1591-601
  59. Sambrook, J., Fritsch E.F., Maniatis T. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed.,1.25-
  60. Kim S. Shilagardi K., Zhang S., Hong S. N., Sens K.L., Bo J., Gonzalez G. A., und Chen E.H. (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Developmental Cell 12, 571-586
  61. Önel S. (2009) Actin regulators take the reins in Drosophila myoblast fusion. Cent. Eur. J. Biol. 4(1)
  62. (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci.112 ( Pt 10):1553-65
  63. Oren-Suissa M. und Podbilewicz B. (2007) Cell fusion during development. Trends Cell Biol. 17: 537-546
  64. Thomas S.M. und Brugge J.S. (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 13:513-609
  65. Niwa R., Nagata-Ohashi K., Takeichi M., Mizuno K., Uemura T. (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 108(2):233-46
  66. Krause M., Dent E.W., Bear J.E., Loureiro J.J., Gertler F.B. (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol. 19:541-64 Review.
  67. Li B. und Fields S.(1993) Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 7(10):957-63
  68. Palmgren S., Ojala P.J., Wear M.A., Cooper J.A., Lappalainen P. (2001) Interactions with PIP2, ADP- actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol. 155(2):251-60
  69. Morgan T.E., Lockerbie R.O., Minamide L.S., Browning M.D., Bamburg J.R. (1993) Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol. 122(3):623-33
  70. Quilliam L.A., Lambert Q.T., Mickelson-Young L.A., Westwick J.K., Sparks A.B., Kay B.K., Jenkins N.A., Gilbert D.J., Copeland N.G., Der C.J. (1996) Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling. J Biol Chem. 271(46):28772-6
  71. Ono S. (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol.258:1-82
  72. Pollard T.D., Blanchoin L., Mullins R.D.( 2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct.;29:545-76
  73. Nowak S.J., Nahirney P.C., Hadjantonakis A.K., Baylies M.K.( 2009) Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci. 122(Pt 18):3282-93
  74. Jones N., Blasutig I.M., Eremina V., Ruston J.M., Bladt F., Li H., Huang H., Larose L., Li S.S., Takano T., Quaggin S.E., Pawson T. (2006) Nck adaptor proteins link Nephrin to the actin cytoskeleton of kidney podocytes. Nature. 440(7085):818-23
  75. Ono S. (2003) Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin- interacting protein 1: new blades for twisted filaments. Biochemistry. 42(46):13363-70
  76. Paavilainen V.O., Berting E., Falck S., Lappalainen P. (2004) Regulation of cytosceletal dynamics by actin-monomer-binding proteins. Trends in Cell Biology, Vol. 14, Nr. 7
  77. Papworth C., Bauer J., Braman J., Wright D. (1996) Site-directed mutagenesis in one day with .80% efficiency. Strategies 9:3–4
  78. Kubomura N., Iwamatsu A., Kaibuchi K. (1998) p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem. 273(1):291-5
  79. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnology. 24:17-27
  80. Takenawa T., Suetsugu S. (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 8(1):37-48
  81. White-Cooper H., Schäfer M.A., Alphey L.S., Fuller M.T. (1998) Transcriptional and post- transcriptional control mechanisms coordinate the onset of spermatid differentiation with meiosis I in Drosophila. Development. 125(1):125-34
  82. Wahlström G., Vartiainen M., Yamamoto L., Mattila P.K., Lappalainen P., Heino T.I. (2001) Twinfilin is required for actin-dependent developmental processes in Drosophlia. JBC, Vol.155, Nr 5, 787-796
  83. Okada K., Obinata T., Abe H. (1999) XAIP1: a Xenopus homologue of yeast actin interacting protein 1
  84. Welsh G.I. und Saleem M.A. (2010) Nephrin-signature molecule of the glomerular podocyte? J Pathol. 220(3):328-37
  85. Ruiz-Gomez M., Coutts N., Price A., Taylor M.V., Bate M. (2000) Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102: 189-198
  86. Jaffe A.B. und Hall A. (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol.21:247-69
  87. Miki H., Yamaguchi H., Suetsugu S., Takenawa T. (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 408(6813):732-5
  88. Moreau V., Frischknecht F., Reckmann I., Vincentelli R., Rabut G., Stewart D., Way M. (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol. 2(7):441-8
  89. Suetsugu S., Miki H., Takenawa T. (1998) The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17(22):6516-26
  90. James P., Halladay J., Craig E.A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 144(4):1425-36
  91. Okada K., Ravi H., Smith E.M., Goode B.L. (2006) Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments. Mol Biol Cell. 17(7):2855-68
  92. Ren N., Charlton J., Adler P.N. (2007) The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics. 176(4):2223-34
  93. McGough A., Pope B., Chiu W. und Weeds A. (1997) Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function. The Journal of Cell Biology, Vol. 138, Nr. 4, 1997 771-781
  94. (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol. 160(3):409-21
  95. Rogers S.L., Wiedemann U., Stuurman N., Vale R.D. (2003) Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol. 162(6):1079-88
  96. Ono S. (2001) The Caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. J Cell Biol. 152(6):1313-9
  97. Taagepera S., McDonald D., Loeb J.E., Whitaker L.L., McElroy A.K., Wang J.Y., Hope T.J. (1998) Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci U S A. 95(13):7457-62
  98. Lappalainen P., Kessels M.M., Cope M.J.T.V., Drubin D.G. (1998) The ADF homology (ADF-H) domain: a highly exploited actin-binding module. Mol. Biol. Cell. 9: 1951–1959
  99. Kerppola T.K. (2008) Overcoming uncertainty through advances in fluorescence imaging of molecular processes in cells. Methods. 45(3):183-4
  100. Tsuji T., Miyoshi T., Higashida C., Narumiya S., Watanabe N. (2009) An order of magnitude faster AIP1-associated actin disruption than nucleation by the Arp2/3 complex in lamellipodia. PLoS One. 4(3):e4921 8. LITERATURVERZEICHNIS ___________________________________________________________________ 168
  101. Richardson B.E., Nowak S.J., Baylies M.K. (2008) Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic. 9(7): 1050–1059
  102. Pham H., Yu H., Laski F.A. (2008) Cofilin/ADF is required for retinal elongation and morphogenesis of the Drosophila rhabdomere. Dev Biol. 318(1):82-91.
  103. Wang J.S., Coburn J.P., Tauber A.I., Zaner K.S. (1997) Role of gelsolin in actin depolymerization of adherent human neutrophils. Mol Biol Cell. 8(1):121-8
  104. Lebensohn A.M. und Kirschner M.W. (2009) Activation of the WAVE complex by coincident signals controls actin assembly. Mol Cell. 36(3):512-24
  105. Kennison J.A. und Tamkun J.W. (1988) Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A. 85(21):8136-40
  106. Paul A.S. und Pollard T.D. (2009) Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton. 66(8):606-17
  107. Richardson B.E., Beckett K. und Baylies M.K. (2008) Live imaging of Drosophila myoblast fusion.
  108. Sens K.L., Zhang S., Jin P., Duan R., Zhang G., Luo F., Parachini L., Chen E.H. (2010) An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol. 191(5):1013-27
  109. Lin C.W., Yen S.T., Chang H.T., Chen S.J., Lai S.L., Liu Y.C., Chan T.H., Liao W.L., Lee S.J. (2010) Loss of cofilin 1 disturbs actin dynamics, adhesion between enveloping and deep cell layers and cell movements during gastrulation in zebrafish. PLoS One. 5(12):e15331
  110. Prado A., Canal I., Barbas J.A., Molloy J., Ferrús A. (1995) Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Mol Biol Cell. 6(11):1433-41
  111. Koronakis V., Hume P.J., Humphreys D., Liu T., Hørning O., Jensen O.N., McGhie E.J. (2011) WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A. 108(35):14449-54
  112. Rohn J.L., Sims D., Liu T., Fedorova M., Schöck F., Dopie J., Vartiainen M.K., Kiger A.A., Perrimon N., Baum B. (2011) Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. J Cell Biol. 194(5):789-805
  113. Jin P., Duan R., Luo F., Zhang G., Hong S.N., Chen E.H. (2011) Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell. 20(5):623-38
  114. Reinhard M., Jouvenal K., Tripier D., Walter U. (1995) Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator- stimulated phosphoprotein). Proc Natl Acad Sci U S A. 92(17):7956-60
  115. Read R.D., Bach E.A., Cagan R.L. (2004) Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol. 24(15):6676-89
  116. Saiki R.K., Chang C.A., Levenson C.H., Warren T.C., Boehm C.D, Kazazian HH Jr, Erlich HA. (1988) Diagnosis of sickle cell anemia and beta-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med. 319(9):537-41
  117. Tea J.S. und Luo L. (2011) The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Dev. 6:5
  118. Schonbaum C.P., Organ E.L., Qu S., Cavener D.R. (1992) The Drosophila melanogaster stranded at second (sas) gene encodes a putative epidermal cell surface receptor required for larval development.
  119. Karess R.E., Rubin G.M. (1984) Analysis of P transposable element functions in Drosophila. Cell. 38(1):135-46
  120. Pantaloni D. und Carlier M.F. (1993) How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell. 75(5):1007-14
  121. Wang G., Woods A., Agoston H., Ulici V., Glogauer M., Beier F. (2007) Genetic ablation of Rac1 in cartilage results in chondrodysplasia. Dev Biol. 306(2):612-23
  122. Kim E., Wriggers W., Phillips M., Kokabi K., Rubenstein P.A., Reisler E. (2000) Cross-linking constraints on F-actin structure. J Mol Biol. 299(2):421-9
  123. controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron. 38(6):887-98
  124. Reinhard M., Jarchau T., Walter U. (2001) Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci. 26(4):243-9
  125. The genomic response of the Drosophila embryo to JNK signaling. Dev Cell. 1(4):579-86
  126. Tixier H., Grevoul J., Loffroy R., Lauferon J., Guiu B., Mutamba W., Filipuzzi L., Cercueil J.P., Douvier S., Krause D., Sagot P. (2010) Preoperative embolization or ligature of the uterine arteries in preparation for conservative uterine fibroma surgery. Acta Obstet Gynecol Scand. Oct;89(10):1310-5
  127. Menon S.D. und Chia W. (2001) Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev Cell. 1(5):691-703


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten