Publikationsserver der Universitätsbibliothek Marburg

Titel:Mechanismen zur Steuerung transkriptioneller Programme für Wachstum und Differenzierung durch den TEA-Regulator Tec1 in Saccharomyces cerevisiae
Autor:van der Felden, Julia
Weitere Beteiligte: Mösch, Hans-Ulrich (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/1102
URN: urn:nbn:de:hebis:04-z2012-11023
DOI: https://doi.org/10.17192/z2012.1102
DDC: Biowissenschaften, Biologie
Titel (trans.):Mechanisms of controlling trancriptional programs for growth and differentiation by the TEA regulator Tec1 in Saccharomyces cerevisiae
Publikationsdatum:2013-02-22
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Genregulation, Zellwachstum, TEA-Regulatoren, Differentiation, Zelldifferenzierung, Cell growth, TEA regulators, Saccharomyces cerevisiae, Transkription <Genetik>, Transcription, MAPK-Signalweg, Gene regulation

Zusammenfassung:
Die Koordination von Wachstum und Differenzierung als Antwort auf verschiedene Signale und Umweltbedingungen ist eine grundlegende Eigenschaft von Organismen. Hierbei erfordern die Anpassung von Zellteilungszyklus und Stoffwechsel und morphologische Änderungen eine spezifische Regulation der Genexpression mit Hilfe von Transkriptionsfaktoren. Eine zentrale Frage ist, welche Kombinationen von Transkriptionsfaktoren an welchen Promotoren bei der Regulation von Wachstum und Differenzierung überhaupt eine Rolle spielen. In der vorliegenden Arbeit wurde exemplarisch die kombinatorische und promotorspezifische Kontrolle des TEA-Transkriptionsfaktors Tec1 aus der Bäckerhefe Saccharomyces cerevisiae untersucht. Tec1 ist zusammen mit dem Transkriptionsfaktor Ste12 an der Regulation der Differenzierungsprogramme Biofilmbildung und Konjugation beteiligt und wird unter anderem über den Fus3/Kss1-MAPK-Signalweg gesteuert. Im ersten Teil dieser Arbeit wurde die Komplexbildung von Tec1 und Ste12 analysiert. Es stellte sich heraus, dass Tec1-Zielgene in eine Ste12-abhängig und in eine Ste12-unabhängig regulierte Klasse eingeteilt werden können. Ste12 kann die Stabilität von Tec1 über dessen C-terminale Domäne regulieren, die zudem eine Ste12-unabhängige Transkriptionsaktivierungsdomäne enthält. Im zweiten Teil der Arbeit wurden die Co-Regulatoren Msa1 und Msa2 als neue Interaktionspartner von Tec1 identifiziert. Tec1, Msa1 und Msa2 regulieren gemeinsam zelluläre Differenzierungsprogramme wie Biofilmbildung und Konjugation. Zudem wirken sie auf den Zellteilungszyklus und die Ribosomensynthese. Dies sind Prozesse, die das Wachstum und die Zellgröße beeinflussen. Tec1, Ste12, Msa1 und Msa2 können verschiedene Komplexe ausbilden und in unterschiedlichen Kombinationen an gemeinsam regulierte Promotoren binden. Der dritte Teil dieser Arbeit beschreibt den Aufbau und die Validierung eines Mess-systems, mit dessen Hilfe man in lebenden Zellen die Signaltransduktionsdynamik im Fus3/Kss1-MAPK-Modul unter verschiedenen Bedingungen quantitativ messen kann. Dies geschieht durch Bestimmung von Menge, Lokalisierung und programm-spezifischer Aktivität der Regulatoren Tec1, Ste12, Dig1 und Dig2 mittels Fluoreszenz-mikroskopie.

Bibliographie / References

  1. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. MacIsaac, K. D., Wang, T., Gordon, D. B., Gifford, D. K., Stormo, G. D. & Fraenkel, E. (2006). An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113.
  3. Hackett, E. a, Esch, R. K., Maleri, S. & Errede, B. (2006). A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23, 333–349.
  4. Brückner, S., Köhler, T., Braus, G. H., Heise, B., Bolte, M. & Mösch, H.-U. (2004). Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet 46, 331–342.
  5. Smets, B., Ghillebert, R., De Snijder, P., Binda, M., Swinnen, E., De Virgilio, C. & Winderickx, J. (2010). Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56, 1–32.
  6. Ramezani Rad, M., Jansen, G., Bühring, F. & Hollenberg, C. P. (1998). Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p. MGG 259, 29–38.
  7. Zeng, Q., Qiu, F. & Yuan, L. (2008). Production of artemisinin by genetically-modified microbes. Biotechnol Lett 30, 581–592.
  8. Chen, L., Loh, P. G. & Song, H. (2010). Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Protein Cell 1, 1073–1083.
  9. Martin, D. E., Soulard, A. & Hall, M. N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979.
  10. Chou, S., Huang, L. & Liu, H. (2004). Fus3-regulated Tec1 degradation through SCF Cdc4 determines MAPK signaling specificity during mating in yeast. Cell 119, 981–90.
  11. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434.
  12. Cook, M. & Tyers, M. (2007). Size control goes global. Curr Opin Biotechnol 18, 341–350.
  13. Monteiro, G. & Netto, L. E. S. (2004). Glucose repression of PRX1 expression is mediated by Tor1p and Ras2p through inhibition of Msn2/4p in Saccharomyces cerevisiae. FEMS Microbiol Lett 241, 221–228.
  14. Pobbati, A. V., Chan, S. W., Lee, I., Song, H. & Hong, W. (2012). Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure 20, 1135–1140.
  15. Johnson, P. R., Swanson, R., Rakhilina, L. & Hochstrasser, M. (1998). Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin- proteasome pathway. Cell 94, 217–227.
  16. Halme, A., Bumgarner, S., Styles, C. & Fink, G. R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405–415.
  17. Tedford, K., Kim, S., Sa, D., Stevens, K. & Tyers, M. (1997). Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7, 228–238.
  18. Nurse, P. (1975). Genetic control of cell size at division in yeast. Nature 256, 547–551.
  19. Dirick, L., Moll, T., Auer, H. & Nasmyth, K. (1992). A central role for SWI6 in modulating cell cycle Start-specific transcrption in yeast. Nature 357, 508–513.
  20. Sollner, S., Schober, M., Wagner, A., Prem, A., Lorkova, L., Palfey, B. A., Groll, M. & Macheroux, P. (2009). Quinone reductase acts as a redox switch of the 20S yeast proteasome. EMBO Reports 10, 65–70.
  21. Chou, S., Zhao, S., Song, Y., Liu, H. & Nie, Q. (2008). Fus3-triggered Tec1 degradation modulates mating transcriptional output during the pheromone response. Mol Syst Biol 4, 212.
  22. Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C. G. & Brent, R. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706.
  23. Zhao, B., Tumaneng, K. & Guan, K.-L. (2011). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biol 13, 877–83.
  24. Mauviel, A., Nallet-Staub, F. & Varelas, X. (2012). Integrating developmental signals: a Hippo in the (path)way. Oncogene 31, 1743–1756.
  25. Delanoue, R., Legent, K., Godefroy, N., Flagiello, D., Dutriaux, A., Vaudin, P., Becker, J. L. & Silber, J. (2004). The Drosophila wing differentiation factor vestigial-scalloped is required for cell proliferation and cell survival at the dorso-ventral boundary of the wing imaginal disc. Cell Death Diff 11, 110–122.
  26. Thevelein, J. M., Geladé, R., Holsbeeks, I., Lagatie, O., Popova, Y., Rolland, F., Stolz, F., Van de Velde, S., Van Dijck, P. & weitere (2005). Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochem Soc Trans 33, 253–256.
  27. Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA 101, 14315–14322.
  28. Robertson, L. S., Causton, H. C., Young, R. A. & Fink, G. R. (2000). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97, 5984–5988.
  29. Yaffe, M. P. & Schatz, G. (1984). Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81, 4819–4823.
  30. Hsu, D. K. W., Guo, Y., Alberts, G. F., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Peifley, K. A. & Winkles, J. A. (1996). Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation. J Biol Chem 271, 13786– 13795.
  31. Elia, L. & Marsh, L. (1998). A role for a protease in morphogenic responses during yeast cell fusion. J Cell Biol 142, 1473–1485.
  32. Heiman, M. G. & Walter, P. (2000). Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151, 719–730.
  33. Matheos, D., Metodiev, M., Muller, E., Stone, D. & Rose, M. D. (2004). Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol 165, 99–109.
  34. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181, 1073–1081.
  35. Hartwell, L. H. & Unger, M. W. (1977). Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75, 422–35.
  36. Mösch, H. U., Kübler, E., Krappmann, S., Fink, G. R. & Braus, G. H. (1999). Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10, 1325–1335.
  37. Morris, R. T., O'Connor, T. R. & Wyrick, J. J. (2010). Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26, 168–174.
  38. Laloux, I., Jacobs, E. & Dubois, E. (1994). Involvement of SRE element of Ty1 transposon in TEC1- dependent transcriptional activation. Nucleic Acids Res 22, 999–1005.
  39. Teixeira, M. C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A. R., Mira, N. P., Alenquer, M., Freitas, A. T., Oliveira, A. L. & Sá-Correia, I. (2006). The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34, 446–451.
  40. Halder, G., Polaczyk, P., Kraus, M. E., Hudson, A., Kim, J., Laughon, A. & Carroll, S. (1998). The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes & Dev 12, 3900–3909.
  41. Jorgensen, P., Rupes, I., Sharom, J. R., Schneper, L., Broach, J. R. & Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes & Dev 18, 2491–2505.
  42. Pramila, T., Wu, W., Miles, S., Noble, W. S. & Breeden, L. L. (2006). The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes & Dev 20, 2266–2278.
  43. Cao, X., Pfaff, S. L. & Gage, F. H. (2008). YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes & Dev 22, 3320–3334.
  44. Zhao, B., Li, L., Lei, Q. & Guan, K.-L. (2010). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes & Dev 24, 862–874.
  45. Errede, B. & Ammerer, G. (1989). STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes & Dev 3, 1349–1361.
  46. Yuan, Y. O., Stroke, I. L. & Fields, S. (1993). Coupling of cell identity to signal response in yeast: interaction between the alpha 1 and STE12 proteins. Genes & Dev 7, 1584–1597.
  47. Roberts, R. L. & Fink, G. R. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes & Dev 8, 2974–2985.
  48. Hung, W., Olson, K. A., Breitkreutz, A. & Sadowski, I. (1997). Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. Eur J Biochem 245, 241–251.
  49. Brückner, S. & Mösch, H.-U. (2012). Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36, 25–58.
  50. Su, T.-C., Tamarkina, E. & Sadowski, I. (2010). Organizational constraints on Ste12 cis-elements for a pheromone response in Saccharomyces cerevisiae. The FEBS journal 277, 3235–3248.
  51. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B.-J. & Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400.
  52. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B. & weitere (2003). A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736.
  53. Madhani, H. D. & Fink, G. R. (1997). Combinatorial control required for the specificity of yeast MAPK signaling. Science 275, 1314–1317.
  54. Peter, M. & Herskowitz, I. (1994). Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265, 1228–1231.
  55. Kojic, E. M. & Darouiche, R. O. (2004). Candida Infections of Medical Devices. Clin Microbiol Rev 17, 255–267.
  56. Esch, R. K., Wang, Y. & Errede, B. (2006). Pheromone-induced degradation of Ste12 contributes to signal attenuation and the specificity of developmental fate. Eukaryot Cell 5, 2147–2160.
  57. Köhler, T., Wesche, S., Taheri, N. & Braus, G. H. (2002). Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1, 673–686.
  58. Treger, J. M. & McEntee, K. (1990). Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae. Mol Cell Biol 10, 3174–3184.
  59. Laloux, I., Dubois, E., Dewerchin, M. & Jacobst, E. (1990). TEC1, a gene involved in the activation of Tyl and Tyl-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol Cell Biol 10, 3541–3550.
  60. Mar, J. H. & Ordahl, C. P. (1990). M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol Cell Biol 10, 4271–4283.
  61. Yuan, Y. L. & Fields, S. (1991). Properties of the DNA-binding domain of the Saccharomyces cerevisiae STE12 protein. Mol Cell Biol 11, 5910–5918.
  62. Roy, A., Lu, C. F., Marykwas, D. L., Lipke, P. N. & Kurjan, J. (1991). The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11, 4196–4206.
  63. Golemis, E. A. & Brent, R. (1992). Fused protein domains inhibit DNA binding by LexA. Mol Cell Biol 12, 3006–3014.
  64. Kirkman-Correia, C., Stroke, I. L. & Fields, S. (1993). Functional domains of the yeast STE12 protein, a pheromone-responsive transcriptional activator. Mol Cell Biol 13, 3765–3772.
  65. Pi, H., Chien, C. T. & Fields, S. (1997). Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p. Mol Cell Biol 17, 6410–6418.
  66. Loy, C. J., Lydall, D. & Surana, U. (1999). NDD1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 19, 3312–3327.
  67. Olson, K. A., Nelson, C., Tai, G., Hung, W., Yong, C., Astell, C. & Sadowski, I. (2000). Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol Cell Biol 20, 4199–4209.
  68. Kuchin, S., Vyas, V. K. & Carlson, M. (2002). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22, 3994–4000.
  69. Kap121p-mediated nuclear import is required for mating and cellular differentiation in yeast. Mol Cell Biol 22, 2544–2555.
  70. Trueheart, J., Boeke, J. E. F. D. & Fink, G. R. (1987). Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol Cell Biol 7, 2316–2328.
  71. Sprague, G. F., Blair, L. C. & Thorner, J. (1983). Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu Rev Microbiol 37, 623–630.
  72. Wu, W.-S. & Li, W.-H. (2008). Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics 9, 522.
  73. Chavel, C. a., Dionne, H. M., Birkaya, B., Joshi, J. & Cullen, P. J. (2010). Multiple signals converge on a differentiation MAPK pathway. PLoS Genetics 6, e1000883.
  74. Vinod, P. K., Sengupta, N., Bhat, P. J. & Venkatesh, K. V. (2008). Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 3, e1663
  75. Wang, Y., Abu Irqeba, A., Ayalew, M. & Suntay, K. (2009). Sumoylation of transcription factor Tec1 regulates signaling of mitogen-activated protein kinase pathways in yeast. PLoS ONE 4, e7456.
  76. White, M. A., Riles, L. & Cohen, B. A. (2009). A systematic screen for transcriptional regulators of the yeast cell cycle. Genetics 181, 435–446.
  77. Brückner, S., Kern, S., Birke, R., Saugar, I., Ulrich, H. D. & Mösch, H.-U. (2011). The TEA transcription factor Tec1 links TOR and MAPK pathways to coordinate yeast development. Genetics 189, 479–494.
  78. Collins, T. J. (2007). ImageJ for microscopy. Biotechniques 43, 25–30.
  79. Li, J., Tetzlaff, M. T. & Elledge, S. J. (2008). Identification of MSA1, a cell cycle-regulated, dosage suppressor of drc1/sld2 and dpb11 mutants. Cell Cycle 7, 3388–3398.
  80. Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E. & weitere (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.
  81. Mar, J. H. & Ordahl, C. P. (1988). A conserved CATTCCT motif is required for skeletal muscle- specific activity of the cardiac troponin T gene promoter. Proc Natl Acad Sci USA 85, 6404–6408.
  82. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.
  83. Fries, S. J. (2012). Analyse der Fus3/Kss1-MAPK-Aktivität in der Bäckerhefe in einem in vivo System. Bachelorarbeit. Fachbereich Biologie, Philipps-Universität Marburg.
  84. Casadaban, M. J. & Cohen, S. N. (1980). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138, 179–207.
  85. Weisser, S. (2011). Analysis of the signal processing dynamics by the Fus3/Kss1-MAPK module in Saccharomyces cerevisiae. Masterarbeit. Fachbereich Biologie, Philipps-Universität Marburg.
  86. Jacquemin, P., Hwang, J.-J., Martial, J. A., Dollé, P. & Davidson, I. (1996). A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA Binding Domain. J Biol Chem 271, 21775–21785.
  87. Holmes, D. S. & Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114, 193–197.
  88. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. (1993). A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551–1557.
  89. Kraakman, L., Lemaire, K., Ma, P., Teunissen, A. W. R. H., Donaton, M. C. V., Van Dijck, P., Winderickx, J., de Winde, J. H. & Thevelein, J. M. (1999). A Saccharomyces cerevisiae G- protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32, 1002–1012.
  90. Cullen, P. J., Sabbagh, W., Graham, E., Irick, M. M., van Olden, E. K., Neal, C., Delrow, J., Bardwell, L. & Sprague, G. F. (2004). A signaling mucin at the head of the Cdc42-and MAPK- dependent filamentous growth pathway in yeast. Genes & Dev 18, 1695–1708.
  91. Robzyk, K. & Kassir, Y. (1992). A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20, 3790.
  92. Tesfaigzi, J., Smith-Harrison, W. & Carlson, D. M. (1994). A simple method for reusing western blots on PVDF membranes. Biotechniques 17, 268–269.
  93. Kostriken, R., Strathern, J. N., Klar, A. J., Hicks, J. B. & Heffron, F. (1983). A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35, 167–174.
  94. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K. & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol 20, 87–90.
  95. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. (1999). A WW domain-containing yes- associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18, 2551–2562.
  96. Reynolds, T. B. & Fink, G. R. (2001). Bakers' yeast, a model for fungal biofilm formation. Science 291, 878–881.
  97. Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S. & weitere (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4, 555–557.
  98. Freifelder, D. (1960). Bud position in Saccharomyces cerevisiae. J Bacteriol 80, 576–568.
  99. Yao, S., Neiman, A. & Prelich, G. (2000). BUR1 and BUR2 encode a divergent cyclin-dependent kinase-cyclin complex important for transcription in vivo. Mol Cell Biol 20, 7080–7087.
  100. Mandel, M. & Higa, A. (1970). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159– 163.
  101. Turner, J. J., Ewald, J. C. & Skotheim, J. M. (2012). Cell size control in yeast. Curr Biol 22, 350–359.
  102. Xiao, J. H., Davidson, I., Matthes, H., Garnier, J.-M. & Chambon, P. (1991). Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65, 551–568.
  103. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.
  104. Harvey, S. L. & Kellogg, D. R. (2003). Conservation of mechanisms controlling entry into mitosis. Curr Biol 13, 264–275.
  105. Rose, M. & Botstein, D. (1983). Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol 101, 167–180.
  106. Gannon, F. & Powell, R. (1991). Construction of recombinant DNA molecules. In Essential Molecular Biology: A Practical Approach, 1st Edn., pp. 143–160. Edited by T. A. Brown. IRL Press, Oxford, U.K.
  107. Varelas, X. & Wrana, J. L. (2012). Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 22, 88–96.
  108. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. (1977). Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105, 79–98.
  109. Palecek, S. P., Parikh, A. S., Huh, J. H. & Kron, S. J. (2002). Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol Microbiol 45, 453– 469.
  110. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98, 503–517.
  111. van der Felden, J. (2008). Die Rolle der Tec1-Ste12-Heterodimerbildung bei der Transkriptionskontrolle in Saccharomyces cerevisiae. Diplomarbeit. Fachbereich Biologie, Philipps-Universität Marburg.
  112. Warner, J. R., Vilardell, J. & Sohn, J. H. (2001). Economics of ribosome biosynthesis. Cold Spring Harb Symp Quant Biol66, 567–574.
  113. Madhani, H. D., Galitski, T., Lander, E. S. & Fink, G. R. (1999). Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci USA 96, 12530–12535.
  114. Liu, H., Styles, C. A. & Fink, G. R. (1993). Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262, 1741–1744.
  115. Crespo, J. L. & Hall, M. N. (2002). Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66, 579–591.
  116. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S. A., Gayyed, M. F., Anders, R. A., Maitra, A. & Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133.
  117. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. & Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.
  118. Douglas, L. M., Li, L., Yang, Y. & Dranginis, A. M. (2007). Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6, 2214–2221.
  119. Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations identify a negative regulator of PRP genes. Genetics 136, 833–847.
  120. Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 10, 896–906.
  121. Chen, R. E. & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773, 1311–1340.
  122. Guarente, L. & Ptashne, M. (1981). Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 78, 2199–2203.
  123. Wittenberg, C., Sugimoto, K. & Reed, S. I. (1990). G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34 CDC28 protein kinase. Cell 62, 225–237.
  124. Hinnebusch, A. G. (1992). General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. In The molecular and cellular biology of the yeast Saccharomyces: Gene expression, pp. 319–414. Edited by E. W. Jones, J. R. Pringle & J. R. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  125. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. (1974). Genetic control of the cell division cycle in yeast. Science 183, 46–51.
  126. Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. & Brown, P. O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538.
  127. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.
  128. Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. & Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature 425, 737–741.
  129. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N. & weitere (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.
  130. Lempiäinen, H. & Shore, D. (2009). Growth control and ribosome biogenesis. Curr Opin Cell Biol 21, 855–863.
  131. Schneider, B. L., Zhang, J., Markwardt, J., Volpe, T., Honey, S., Futcher, B. & Tokiwa, G. (2004). Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24, 10802–10813.
  132. Zaman, S., Lippman, S. I., Zhao, X. & Broach, J. R. (2008). How Saccharomyces responds to nutrients. Annu Review Genet 42, 27–81.
  133. Foury, F. (1997). Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10.
  134. Jiang, S.-W., Wu, K. & Eberhardt, N. L. (1999). Human placental TEF-5 transactivates the human chorionic somatomammotropin gene gnhancer. Mol Endocrinol 13, 879–889.
  135. Yanisch-Perron, C., Vieira, J. & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.
  136. Wu, J., Duggan, A. & Chalfie, M. (2001). Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes & Dev 15, 789–802.
  137. Cook, J. G., Bardwell, L. & Thorner, J. (1997). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390, 85–88.
  138. Wolfner, M., Yep, D., Messenguy, F. & Fink, G. R. (1975). Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J Mol Biol 96, 273–290.
  139. Mirabito, P. M., Adams, T. H. & Timberlake, W. E. (1989). Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859– 868.
  140. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K. & Wigler, M. (1985). In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 27–36.
  141. Kern, S. (2011). Kernimport des TEAD-Transkriptionsfaktors Tec1 aus Saccharomyces cerevisiae. Dissertation. Fachbereich Biologie, Philipps-Universität Marburg.
  142. Sherman, F., Fink, G. R. & Hicks, J. B. (1986). Laboratory course manual for methods in yeast genetics. In Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  143. Herskowitz, I. (1988). Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52, 536–553.
  144. Madhani, H. D., Styles, C. A. & Fink, G. R. (1997). MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673–684.
  145. Cappellaro, C., Baldermann, C., Rachel, R. & Tanner, W. (1994). Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a-and alpha- agglutinin. EMBO J 13, 4737–4744.
  146. Farrance, I. K. G., Mar, J. H. & Ordahl, P. (1992). M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1. J Biol Chem 267, 17234–17240.
  147. Tye, B. K. (1999). MCM proteins in DNA replication. Ann Rev Biochem 68, 649–686.
  148. Kupiec, M., Byers, B., Esposito, R. E. & Mitchell, A. P. (1997). Meiosis and sporulation in Saccharomyces cerevisiae. In The molecular and cellular biology of the yeast Saccharomyces: Cell cycle and cell biology, pp. 889–1036. Edited by J. R. Pringle, J. R. Broach & E. W. Jones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  149. Simmonds, A. J., Liu, X., Soanes, K. H., Krause, H. M., Irvine, K. D. & Bell, J. B. (1998). Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Genes & Dev 12, 3815–3820.
  150. Gietz, R. D. & Sugino, A. (1988). New yeast -Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 14, 527–534.
  151. Thevelein, J. M. & de Winde, J. H. (1999). Novel sensing mechanisms and targets for the cAMP- protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904–918.
  152. Görner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H. & Schüller, C. (1998). Nuclear localization of the C 2 H 2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes & Dev 12, 586–597.
  153. Rohde, J. R., Bastidas, R., Puria, R. & Cardenas, M. E. (2008). Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 11, 153–160.
  154. Shamji, A. F., Kuruvilla, F. G. & Schreiber, S. L. (2000). Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol 10, 1574–1581.
  155. Erdman, S. (1998). Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140, 461–483.
  156. Wang, Y. & Dohlman, H. G. (2006). Pheromone-regulated sumoylation of transcription factors that mediate the invasive to mating developmental switch in yeast. J Biol Chem 281, 1964–1969.
  157. Chan, R. K. & Otte, C. A. (1982). Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to Gl arrest by a factor and alpha factor pheromones. Mol Cell Biol 2, 21–29.
  158. Lobo, Z. & Maitra, P. K. (1977). Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae. Arch Biochem Biophys 182, 639–645.
  159. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404.
  160. Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. (2001). Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nature Genet 28, 327–334.
  161. Lord, P. G. & Wheals, A. E. (1983). Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor. J Cell Sci 59, 183–201.
  162. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. (1998). Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes & Dev 12, 2956–2970.
  163. Chou, S., Lane, S. & Liu, H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 26, 4794–805.
  164. Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S. & weitere (2001). Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12, 323–37.
  165. Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Du, J., Laurent, B. & Kornberg, R. D. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260.
  166. Loeb, J. D. J., Kerentseva, T. A., Pan, T., Sepulveda-Becerra, M. & Liu, H. (1999). Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and protein kinase pathway. Genetics 153, 1535–1546.
  167. Goulev, Y., Fauny, J. D., Gonzalez-Marti, B., Flagiello, D., Silber, J. & Zider, A. (2008). Scalloped interacts with Yorkie, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18, 435–441.
  168. Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G. & weitere (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26, 663–674.
  169. Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y. D., Dai, H., Walker, W. L. & weitere (2000). Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880.
  170. Weiner, M. P., Costa, G. L., Schoettlin, W., Cline, J., Mathur, E. & Bauer, J. C. (1994). Site-directed mutagenesis of double-stranded DNA by the polymerasec hain reaction. Gene 151, 119–123.
  171. Paumard-Rigal, S., Zider, A., Vaudin, P. & Silber, J. (1998). Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster. Dev Genes Evol 208, 440–446.
  172. Hess, S. M., Stanford, D. R. & Hopper, A. K. (1994). SRD1, a S. cerevisiae gene affecting pre-rRNA processing contains a C 2 /C 2 zinc finger motif. Nucleic Acids Res 22, 1265–1271.
  173. Hoi, J. W. S. & Dumas, B. (2010). Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryot Cell 9, 480–485.
  174. Zheng, X. F. & Schreiber, S. L. (1997). Target of rapamycin proteins and their kinase activities are required for meiosis. Proc Natl Acad Sci USA 94, 3070–3075.
  175. Heitman, J., Movva, N. & Hall, M. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909.
  176. Übersax, J. A., Woodbury, E. L., Quang, P. N., Paraz, M., Blethrow, J. D., Shah, K., Shokat, K. M. & Morgan, D. O. (2003). Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864.
  177. Lo, W. S. & Dranginis, A. M. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161–171.
  178. Toyn, J. H. & Johnston, L. H. (1994). The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J 13, 1103–13.
  179. Primig, M., Winkler, H. & Ammerer, G. (1991). The DNA binding and oligomerization domain of MCM1 is sufficient for its interaction with other regulatory proteins. EMBO J 10, 4209–4218.
  180. Hilman, D. & Gat, U. (2011). The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol 28, 2403–2417.
  181. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L. Y., Toufighi, K. & weitere (2010). The genetic landscape of a cell. Science 327, 425–431.
  182. Schlenstedt, G., Saavedra, C., Loeb, J. D., Cole, C. N. & Silver, P. A. (1995). The GTP-bound form of the yeast Ran/TC4 homologue blocks nuclear protein import and appearance of poly(A)+ RNA in the cytoplasm. Proc Natl Acad Sci USA 92, 225–229.
  183. Zhao, B., Lei, Q.-Y. & Guan, K.-L. (2008). The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20, 638–646.
  184. Rispail, N. & Di Pietro, A. (2010). The homeodomain transcription factor Ste12 connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 3, 327–332.
  185. Oehlen, L. & Cross, F. (1998). The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett 429, 83–88.
  186. Cullen, P. J. & Sprague, G. F. (2012). The regulation of filamentous growth in yeast. Genetics 190, 23– 49.
  187. Farrance, I. K. G. & Ordahl, C. P. (1996). The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J Biol Chem 271, 8266–8274.
  188. Pringle, J. R. & Hartwell, L. H. (1981). The Saccharomyces cerevisiae cell cycle. In The molecular biology of the yeast Saccharomyces Life cycle and inheritance, pp. 97–142. Edited by J. N. Strathern, E. W. Jones & J. R. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  189. Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H. & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227–35.
  190. Bürglin, T. R. (1991). The TEA domain: a novel, highly conserved DNA-binding motif. Cell 66, 11–12.
  191. Heise, B., van der Felden, J., Kern, S., Malcher, M., Brückner, S. & Mösch, H.-U. (2010). The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and - independent mechanisms. Eukaryot Cell 9, 514–531.
  192. Cutler, N. S., Pan, X., Heitman, J. & Cardenas, M. E. (2001). The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell 12, 4103–4113.
  193. Schmidt, A., Kunz, J. & Hall, M. N. (1996). TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 93, 13780–13785.
  194. Titz, B., Thomas, S., Rajagopala, S. V., Chiba, T., Ito, T. & Uetz, P. (2006). Transcriptional activators in yeast. Nucleic Acids Res 34, 955–967.
  195. Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G. & Marton, M. J. (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21, 4347–4368.
  196. Hahn, S. & Young, E. T. (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736.
  197. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. (1983). Transformation of intact yeast cells treated with alkali. J Bacteriol 153, 163–168.
  198. Hinnebusch, A. G. (1997). Translational regulation of yeast GCN4. J Biol Chem 272, 21661–21664.
  199. Elledge, S. J. & Davis, R. W. (1990). Two genes differentially regulated in the cell cycle and by DNA- damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes & Dev 4, 740–751.
  200. Cook, J. G., Bardwell, L., Kron, S. J. & Thorner, J. (1996). Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes & Dev 10, 2831–2848.
  201. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P. & Hall, M. N. (2002). Two TOR complexes, only one of which is Rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457–468.
  202. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. (1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077– 1090.
  203. Bölker, M. (2001). Ustilago maydis -a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147, 1395–1401.
  204. Calderone, R. A. & Fonzi, W. A. (2001). Virulence factors of Candida albicans. Trends Microbiol 9, 327–335.
  205. Mendizabal, I., Rios, G., Mulet, J. M., Serrano, R. & de Larrinoa, I. F. (1998). Yeast putative transcription factors involved in salt tolerance. FEBS Lett 425, 323–328.
  206. Sobering, A. K., Jung, U. S., Lee, K. S. & Levin, D. E. (2002). Yeast Rpi1 is a putative transcriptional regulator that contributes to preparation for stationary phase. Eukaryot Cell 1, 56–65.
  207. Myers, A. M., Tzagoloff, A., Kinney, D. M. & Lusty, C. J. (1986). Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299–310.
  208. Hagen, D. C., Mc Caffrey, G. & Sprague, G. F. (1991). Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 11, 2952–2961.
  209. Kim, J. H. & Powers, S. (1991). Overexpression of RPI1, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated Ras function. Mol Cell Biol 11, 3894–3904.
  210. Hahn, J.-S., Hu, Z., Thiele, D. J. & Iyer, V. R. (2004). Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24, 5249–5256.
  211. Jansen, G., Wu, C., Schade, B., Thomas, D. Y. & Whiteway, M. (2005). Drag&Drop cloning in yeast. Gene 344, 43–51.
  212. Schweizer, A., Rupp, S., Taylor, B. N., Röllinghoff, M. & Schröppel, K. (2000). The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38, 435–445.
  213. Gavrias, V., Alex, A., Gimeno, C. J. & Timberlake, W. E. (1996). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19, 1255–1263.
  214. Hinnebusch, A. G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59, 407–450.
  215. Enserink, J. M. & Kolodner, R. D. (2010). An overview of Cdk1-controlled targets and processes. Cell Div 5, 11.
  216. Loewith, R. & Hall, M. N. (2011). Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201.
  217. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972.
  218. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C. & weitere (1996). Life with 6000 Genes. Science 274, 546–567.
  219. Lorenz, M. C., Cutler, N. S. & Heitman, J. (2000). Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11, 183–99.
  220. Wittenberg, C. & Reed, S. I. (2005). Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755.
  221. Rupp, S., Summers, E., Lo, H. J., Madhani, H. & Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257–1269.
  222. Sikorski, R. S. & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
  223. Mösch, H.-U. & Fink, G. R. (1997). Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Cell 4272– 4284.
  224. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular cloning : A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  225. Yao, R., Zhang, Z., An, X., Bucci, B., Perlstein, D. L., Stubbe, J. & Huang, M. (2003). Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA 100, 6628–6633.
  226. Guo, B., Styles, C. a, Feng, Q. & Fink, G. R. (2000). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97, 12158–12163.
  227. Cullen, P. J. & Sprague, G. F. (2000). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97, 13619–13624.
  228. Prinz, S., Aldridge, C., Ramsey, S. A., Taylor, R. J. & Galitski, T. (2007). Control of signaling in a MAP-kinase pathway by an RNA-binding protein. PLoS ONE 2, e249.
  229. Robertson, L. S. & Fink, G. R. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95, 13783–13787.
  230. Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., MacIsaac, K. D., Danford, T. W., Hannett, N. M., Tagne, J.-B., Reynolds, D. B. & weitere (2004). Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.
  231. Kron, S. J., Styles, C. A. & Fink, G. R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5, 1003–1022.
  232. Mösch, H. U., Roberts, R. L. & Fink, G. R. (1996). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 5352–5356.
  233. Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350–4354.
  234. Nash, R., Tokiwa, G., Anand, S., Erickson, K. & Futcher, A. B. (1988). The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7, 4335–4346.
  235. Pan, X. & Heitman, J. (1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19, 4874–4887.
  236. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. (2009). Systematic identification of cell cycle- dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106, 10171–10176.
  237. Hadwiger, J. A., Wittenberg, C., Richardson, H. E., De Barros Lopes, M. & Reed, S. I. (1989). A family of cyclin homologs that control the G1 phase in yeast. Proc Natl Acad Sci USA 86, 6255– 6259.
  238. Hoffman, C. S. & Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.
  239. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557– 580.
  240. Roberts, R. L., Mösch, H.-U. & Fink, G. R. (1997). 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89, 1055–1065.
  241. Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr Biol 12, 1992–2001.
  242. Jorgensen, P. & Tyers, M. (2004). How cells coordinate growth and division. Curr Biol 14, 1014–1027.
  243. De Virgilio, C. & Loewith, R. (2006). The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38, 1476–1481.
  244. Tamaki, H. (2007). Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng 104, 245–250.
  245. Jungbluth, M., Renicke, C. & Taxis, C. (2010). Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4, 176.
  246. Singh, J. & Tyers, M. (2009). A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes & Dev 23, 1944–1958.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten