Publikationsserver der Universitätsbibliothek Marburg

Titel:On the mechanism of TASK channel inhibition by G-Protein coupled receptors
Autor:Lindner, Moritz
Weitere Beteiligte: Oliver, Dominik (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/1065
DOI: https://doi.org/10.17192/z2012.1065
URN: urn:nbn:de:hebis:04-z2012-10657
DDC: Medizin
Titel (trans.):Über den Mechanismus der TASK-Kanal Inhibition durch G-Protein gekoppelte Rezeptoren
Publikationsdatum:2013-02-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Task, K2P potassium channels, K2P-Kaliumkanäle, Phospholipase C, G-Protein gekoppelte Rezeptoren, Hintergrund-Task

Summary:
Background K+ conductance TASK channels belong to the family of two pore domain potassium channels. They are involved in regulation of neuronal excitability, cardiovascular homeostasis and endocrine activity. TASK channel activity is down-regulated by activation Gq-protein coupled receptors (GqPCR). In various tissues this regulatory mechanism is crucial for proper organ function. Well studied examples of GqPCR mediated TASK channel inhibition are the cholinergic inhibition of IK,SO in cerebellar granule neurons, angiotensin II stimulated aldosterone secretion in adrenal zona-glomerulosa cells and vasoconstriction of the pulmonary artery by endothelin-1. Despite intense research, the mechanism underlying this inhibition remains elusive. Strong evidence exists for two competing hypotheses: TASK channels could be either blocked directly by the Gq-alpha subunit released on GqPCR activation, or their closure could be a direct consequence of Phospholipase C (PLC)-mediated phosphatidyl-inositol(4,5)-bis-phosphate (PtdIns(4,5)P2) depletion. In the present study I investigated the role of PLC mediated phosphoinositide cleavage in the process of TASK channel regulation by GqPCR in the intact cell. Recently developed genetically encoded switchable phosphoinositide-phosphatases were used to specifically deplete PtdIns(4,5)P2. Additionally, I interfered with PtdIns(4,5)P2 resynthesis and PLC activity. I found that blockage of PLC results in abolishment of GqPCR induced TASK inhibition. However depletion of the PLC substrate PtdIns(4,5)P2 alone was not sufficient to inhibit TASK. These results show that PLC activation is an indispensable step in TASK channel inhibition. They further demonstrate that the depletion of PtdIns(4,5)P2 does not directly inhibit TASK and therefore suggest that a regulatory mechanism downstream of PtdIns(4,5)P2-hydrolysis mediates TASK channel inhibition.

Bibliographie / References

  1. Kwiatkowska K. (2010). One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci 67, 3927-3946.
  2. Morton MJ, O'Connell AD, Sivaprasadarao A & Hunter M. (2003). Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2. Pflugers Arch 445, 577-583.
  3. Suga S, Nakano K, Takeo T, Osanai T, Ogawa Y, Yagihashi S, Kanno T & Wakui M. (2003). Masked excitatory action of noradrenaline on rat islet beta-cells via activation of phospholipase C. Pflugers Arch 447, 337-344.
  4. Rohacs T. (2009). Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45, 554-565.
  5. Suh BC & Hille B. (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507-520.
  6. Ono K, Tsujimoto G, Sakamoto A, Eto K, Masaki T, Ozaki Y & Satake M. (1994). Endothelin-A receptor mediates cardiac inhibition by regulating calcium and potassium currents. Nature 370, 301-304.
  7. Luscher C & Slesinger PA. (2010). Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11, 301-315.
  8. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100, 745-750. Appendix MORITZ LINDNER -X -
  9. MacGregor GG, Dong K, Vanoye CG, Tang L, Giebisch G & Hebert SC. (2002). Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. Proc Natl Acad Sci U S A 99, 2726-2731.
  10. Ryu SH, Suh PG, Cho KS, Lee KY & Rhee SG. (1987). Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid- specific phospholipase C. Proc Natl Acad Sci U S A 84, 6649-6653.
  11. Lopes CM, Gallagher PG, Buck ME, Butler MH & Goldstein SA. (2000). Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275, 16969-16978.
  12. Roy A & Levine TP. (2004). Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279, 44683-44689.
  13. Johnson CM, Chichili GR & Rodgers W. (2008). Compartmentalization of phosphatidylinositol 4,5-bisphosphate signaling evidenced using targeted phosphatases. J Biol Chem 283, 29920-29928.
  14. Schiekel J, Lindner M, Hetzel A, Wemhöner K, Renigunta V, Schlichthörl G, Decher N, Oliver D & Daut J. (in revision). Inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res.
  15. Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A & Daut J. (2002). Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545, 13-26.
  16. Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P & Logothetis DE. (2005). PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564, 117-129.
  17. Hopwood SE & Trapp S. (2005). TASK-like K+ channels mediate effects of 5- HT and extracellular pH in rat dorsal vagal neurones in vitro. J Physiol 568, 145-154.
  18. Sakata S, Hossain MI & Okamura Y. (2011). Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity. J Physiol.
  19. Lindner M, Leitner MG, Halaszovich CR, Hammond GR & Oliver D. (2011). Probing the regulation of TASK potassium channels by PI(4,5)P with switchable phosphoinositide phosphatases. J Physiol 589, 3149-3162.
  20. Oldfield S, Hancock J, Mason A, Hobson SA, Wynick D, Kelly E, Randall AD & Marrion NV. (2009). Receptor-mediated suppression of potassium currents requires colocalization within lipid rafts. Mol Pharmacol 76, 1279-1289.
  21. Migas I, Chuang M, Sasaki Y & Severson DL. (1997). Diacylglycerol metabolism in SM-3 smooth muscle cells. Can J Physiol Pharmacol 75, 1249-1256.
  22. Suh BC & Hille B. (2008). PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37, 175-195.
  23. Karpushev AV, Ilatovskaya DV, Pavlov TS, Negulyaev YA & Staruschenko A. (2010). Intact cytoskeleton is required for small G protein dependent activation of the epithelial Na+ channel. PLoS One 5, e8827.
  24. Li Y, Gamper N, Hilgemann DW & Shapiro MS. (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5- bisphosphate. J Neurosci 25, 9825-9835.
  25. Liu C, Au JD, Zou HL, Cotten JF & Yost CS. (2004). Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth Analg 99, 1715-1722, table of contents.
  26. Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ & Hardie RC. (2010). Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20, 189-197.
  27. Leitner MG, Halaszovich CR & Oliver D. (2010). Aminoglycosides inhibit KCNQ4 channels in cochlear outer hair cells via depletion of phosphatidylinositol(4,5)bisphosphate. Mol Pharmacol 79, 51-60.
  28. Miller AN. (2012). Crystal Structure of the Human Two–Pore Domain Potassium Channel K2P1 Science.
  29. Huang CL, Feng S & Hilgemann DW. (1998). Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391, 803-806.
  30. Rubanyi GM & Polokoff MA. (1994). Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46, 325-415.
  31. Mizuno N & Itoh H. (2009). Functions and regulatory mechanisms of Gq- signaling pathways. Neurosignals 17, 42-54.
  32. McCudden CR, Hains MD, Kimple RJ, Siderovski DP & Willard FS. (2005). G- protein signaling: back to the future. Cell Mol Life Sci 62, 551-577.
  33. Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, Myszka DG & Shapiro L. (2001). G-protein signaling through tubby proteins. Science 292, 2041-2050.
  34. Lazer G & Katzav S. (2010). Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 23, 969-979.
  35. Lesage F, Terrenoire C, Romey G & Lazdunski M. (2000). Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275, 28398-28405.
  36. Patel AJ, Honore E, Lesage F, Fink M, Romey G & Lazdunski M. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2, 422-426.
  37. Robbins J. (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90, 1-19.
  38. Sakane F & Kanoh H. (1997). Molecules in focus: diacylglycerol kinase. Int J Biochem Cell Biol 29, 1139-1143.
  39. Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S & Ryu SH. (2008). Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41, 415-434.
  40. Mathie A. (2007). Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578, 377-385.
  41. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239-1243.
  42. Mogami H, Lloyd Mills C & Gallacher DV. (1997). Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells. Biochem J 324 ( Pt 2), 645-651.
  43. Stauffer TP, Ahn S & Meyer T. (1998). Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8, 343-346.
  44. Shulga YV, Topham MK & Epand RM. (2011). Regulation and functions of diacylglycerol kinases. Chem Rev 111, 6186-6208.
  45. Suh BC, Horowitz LF, Hirdes W, Mackie K & Hille B. (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor- mediated signaling by Gq. J Gen Physiol 123, 663-683.
  46. Rhee SG. (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70, 281-312.
  47. Neher E & Sakmann B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799-802.
  48. Lomasney JW, Cheng HF, Kobayashi M & King K. (2012). Structural Basis for Calcium and Phosphatidyl Serine Regulation of PLC Delta1. Biochemistry.
  49. Rebecchi MJ & Pentyala SN. (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80, 1291-1335.
  50. Kim Y, Bang H & Kim D. (2000). TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275, 9340-9347.
  51. Rajan S, Wischmeyer E, Xin Liu G, Preisig-Muller R, Daut J, Karschin A & Derst C. (2000). TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 275, 16650-16657.
  52. Patel AJ & Lazdunski M. (2004). The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448, 261-273.
  53. Putzke C, Wemhoner K, Sachse FB, Rinne S, Schlichthorl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Muller R, Daut J & Decher N. (2007). The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75, 59-68.
  54. Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P & Ryan TA. (2007). The dual phosphatase activity of synaptojanin1 is required for Appendix MORITZ LINDNER -VIII - both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron 56, 1004-1018.
  55. Hodgkin AL & Katz B. (1949). The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108, 37-77.
  56. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G & Barhanin J. (1996). TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15, 1004-1011.
  57. Spencer DM, Wandless TJ, Schreiber SL & Crabtree GR. (1993). Controlling signal transduction with synthetic ligands. Science 262, 1019-1024.
  58. Suh BC, Inoue T, Meyer T & Hille B. (2006). Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454-1457.
  59. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM & Zarrinkar PP. (2008). A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26, 127-132.
  60. Kang D, Han J, Talley EM, Bayliss DA & Kim D. (2004). Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol 554, 64-77.
  61. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol 126, 243-262.
  62. Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B & Mathie A. (2000). A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci U S A 97, 3614-3618.
  63. Patel AJ & Honore E. (2001). Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24, 339-346.
  64. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N & Lazdunski M. (1998). Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273, 30863-30869.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten