Publikationsserver der Universitätsbibliothek Marburg

Titel:Spatio-temporal representations during eye movements and their neuronal correlates
Autor:Knöll, Jonas
Weitere Beteiligte: Bremmer, Frank (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0935
URN: urn:nbn:de:hebis:04-z2012-09359
DOI: https://doi.org/10.17192/z2012.0935
DDC:500 Naturwissenschaften
Titel(trans.):Raum-zeitliche Repräsentation während Augenbewegungen und ihre neuronalen Grundlagen
Publikationsdatum:2012-10-30
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
temporal perception, Psychophysik, contrast detection, Sakkade, psychophysics, Elektrophysiologie, Zeitwahrnehmung, electrophysiology, saccade, Visueller Kontrast

Summary:
During fast ballistic eye movements, so-called saccades, our visual perception undergoes a range of distinct changes. Sensitivity to luminance contrasts is reduced (saccadic suppression) and the localization of stimuli can be shifted in the direction of a saccade or is compressed around the saccade target. The temporal order of two stimuli can be perceived as inverted and the duration in between can be underestimated. The duration of a target change close to the saccade target can be overestimated, when the change occurs during the saccade (chronostasis). In my thesis I investigated the spatial and temporal profiles of peri-saccadic changes in human visual perception and explored how these might result from changes in neural activity of the macaque middle temporal area (MT). I found that peri-saccadic contrast sensitivity was only reduced by a constant factor across space when the data was analyzed in retinal coordinates (as opposed to screen coordinates), indicating that saccadic suppression occurs in an eye-centered frame of reference. I demonstrated that the found variations of saccadic suppression with the location of the stimulus appear to cause variations in the spatio-temporal pattern of another peri-saccadic misperception: chronostasis. I was able to show that, unlike previously assumed, the saccadic overestimation of time is not a spatially localized disturbance of time perception but instead spans across the whole visual field. I further determined that chronostasis is not dependent on the eye movement itself, but is rather a consequence of the visual stimulation induced by it. This result clearly segregates chronostasis from other peri-saccadic perceptual changes like saccadic suppression and the compression of space. To relate these findings to a potential neuronal basis of saccadic suppression and time perception, I measured neuronal responses of single cells in MT of an awake behaving macaque. The results provide relevant insight into the processing of stationary stimuli and pairs of stimuli during fixation and saccades in MT. Responses to the second of a pair of stimuli were strongly suppressed and response latencies increased even at onset asynchronies of about 100ms. The increase in latency is an important difference to the temporal dynamics previously reported in other brain areas as the frontal eye field in the frontal cortex and the superior colliculus in the midbrain. During saccades, response latencies to single high luminance stimuli remained unchanged. For stimuli shown during the second half of the saccade, the average responses were reduced. By comparison with responses to single stimuli at different luminance levels during fixation, I was able to show that the peri-saccadic response reduction found in MT quantitatively fit to what could be expected from known psychophysical measurements of peri-saccadic contrast sensitivity. Responses that were already reduced due to a preceding stimulus were however not subject to further reductions, indicating a possible interaction of these two response modulations. Saccadic suppression occurs in an eye-centered frame of reference with changes in perception compatible to changes in single cell activity in the macaque monkey MT. The peri-saccadic overestimation of time is influenced by saccadic suppression and the saccade-induced visual changes, but is not dependent on eye-movement related signals.

Zusammenfassung:
Unsere visuelle Wahrnehmung durchläuft während rascher Augenbewegungen, sogenannter Sakkaden, eine Reihe spezifischer Veränderungen. Die Fähigkeit, Helligkeitskontraste wahrzunehmen (Luminanzkontrastsensitivität), ist während Sakkaden reduziert (sakkadische Suppression) und kurz eingeblendete Reize können in Richtung der Sakkade oder zum Ziel der Sakkade hin verschoben wahrgenommen werden. Auch die Wahrnehmung der Zeit ist beeinflusst. Die zeitliche Reihenfolge zweier Reize kann invertiert und die Zeit zwischen den Reizen als verkürzt wahrgenommen werden. Die Dauer einer visuellen Reizänderung in der Nähe des Sakkadenziels kann hingegen als länger wahrgenommen werden (Chronostasis), wenn diese Änderung während einer Sakkade beginnt. In dieser Arbeit habe ich die raum-zeitlichen Profile von Änderungen der menschlichen perisakkadischen Wahrnehmung und mögliche damit zusammenhängende Veränderungen der neuronalen Aktivität im medio temporalen Areal (MT) des Rhesusaffen während Sakkaden untersucht. Ich habe herausgefunden, dass die sakkadische Suppression in einem augenzentrierten Koordinatensystem auftritt und ich konnte zeigen, dass die gefundenen Variationen der sakkadischen Suppression mit dem Stimulusort das raum-zeitliche Profil einer weiteren Wahrnehmungsänderung zu beeinflussen scheinen: Chronostasis. Die Daten widerlegen frühere Annahmen, dass Chronostasis nur eine lokal begrenzte Verzerrung der Zeitwahrnehmung ist. Sie zeigen vielmehr, dass sie im gesamten visuellen Feld auftritt. Zudem ergaben meine Messungen, dass Chronostasis nicht von der Augenbewegung selbst abhängt, sondern eine Konsequenz der sakkadenbedingten Änderung des Abbildes der visuellen Reize ist. In dieser Hinsicht unterscheidet sich Chronostasis klar von anderen perisakkadischen Wahrnehmungsänderungen wie der sakkadischen Suppression und der Kompression der Reizlokalisierung um das Sakkadenziel herum. Auf der Suche nach einer neuronalen Basis dieser Ergebnisse bezüglich der sakkadischen Suppression und der Zeitwahrnehmung habe ich Einzelzellsignale in MT eines wachen, sich verhaltenden Makaken gemessen. Die Ergebnisse meiner Untersuchungen liefern relevante Erkenntnisse über die Verarbeitung stationärer visueller Reize und Paare solcher Reize während Fixation und Sakkaden in MT. Die neuronalen Antworten auf den zweiten von zwei Reizen waren stark reduziert und die Antwortlatenzen erhöht; selbst bei einem zeitlichen Abstand der beiden Reize von ungefähr 100ms. Diese erhöhte Latenz ist ein wichtiger Unterschied zu den Berichten der zeitlichen Dynamik in anderen Hirnarealen des Makaken wie dem frontalen Augenfeld im Frontalcortex und dem Colliculus superior im Mittelhirn. Während Sakkaden blieben die Latenzen für Antworten auf einzelne helle Reize jedoch unverändert, während die Antwortstärke für Reize, die in der zweiten Hälfte der Sakkade gezeigt wurden, reduziert war. Der Vergleich mit Antworten auf Reize unterschiedlicher Helligkeit während Fixation zeigte, dass die perisakkadische Reduktion der Antworten in MT quantitativ zu bekannten, psychophysikalisch gemessenen, perisakkadischen Reduktionen der Kontrastsensitivität passt. Durch einen vorhergehenden Reiz bereits reduzierte Antworten schienen während Sakkaden nicht zusätzlich reduziert. Dies könnte auf eine Interaktion der beiden zugrundeliegenden Mechanismen hindeuten. Die sakkadische Suppression tritt also in einem augenzentrierten Koordinatensystem auf, wobei die Reduktion der Kontrastsensitivität vergleichbar mit der Reduktion der neuronalen Aktivität in Area MT eines Makaken war. Die peri-sakkadische Überschätzung von Reizdauern wird durch die sakkadische Suppression und die sakkadeninduzierten visuellen Änderungen beeinflusst, ist jedoch selbst nicht abhängig von Augenbewegungssignalen.

Bibliographie / References

  1. Ungerleider, L. G., & Mishkin, M. (1982). Analysis of Visual Behavior. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), (pp. 549–586). Cambridge, MA: MIT Press.
  2. Eckhorn, R., Krause, F., & Nelson, J. I. (1993). The RF-cinematogram. A cross-correlation tech- nique for mapping several visual receptive fields at once. Biological cybernetics, 69(1), 37–55. doi:10.1007/BF00201407
  3. Brown, J. F. (1931). On time perception in visual movement fields. Psychologische Forschung, 14(1), 233–248. doi:10.1007/BF00403874 Burr, D. C., Holt, J., Johnstone, J. R., & Ross, J. (1982). Selective depression of motion sensitivity during saccades. The Journal of physiology, 333, 1–15.
  4. Park, J., Schlag-Rey, M., & Schlag, J. (2003). Voluntary action expands perceived duration of its sensory consequence. Experimental brain research, 149(4), 527–9. doi:10.1007/s00221-003-1376-x
  5. Alexander, I., Thilo, K. V., Cowey, A., & Walsh, V. (2005). Chronostasis without voluntary action. Experimental brain research, 161(1), 125–32. doi:10.1007/s00221-004-2054-3
  6. Leopold, D. A., & Logothetis, N. K. (1998). Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Experimental Brain Research, 123(3), 341–345. doi:10.1007/s002210050577
  7. Campbell, F. W., & Wurtz, R. H. (1978). Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision research, 18(10), 1297–303. doi:10.1016/0042-6989(78)90219-5
  8. Honda, H. (1995). Visual mislocalization produced by a rapid image displacement on the retina: examination by means of dichoptic presentation of a target and its background scene. Vision re- search, 35(21), 3021–8. doi:10.1016/0042-6989(95)00108-C References 137
  9. Burr, D. C., & Morrone, M. C. (1996). Temporal impulse response functions for luminance and colour during saccades. Vision research, 36(14), 2069–78. doi:10.1016/0042-6989(95)00282-0
  10. Goodale, M. a, & Milner, a D. (1992). Separate visual pathways for perception and action. Trends in neurosciences, 15(1), 20–5. doi:10.1016/0166-2236(92)90344-8
  11. Ross, J., Burr, D., & Morrone, M. C. (1996). Suppression of the magnocellular pathway during saccades. Behavioural brain research, 80(1-2), 1–8. doi:10.1016/0166-4328(96)00012-5
  12. Yarrow, K., Haggard, P., & Rothwell, J. C. (2004). Action, arousal, and subjective time. Conscious- ness and cognition, 13(2), 373–90. doi:10.1016/j.concog.2003.10.006
  13. Kleiser, R., Seitz, R. J., & Krekelberg, B. (2004). Neural correlates of saccadic suppression in hu- mans. Current biology, 14(5), 386–90. doi:10.1016/j.cub.2004.02.036
  14. Melcher, D. (2005). Spatiotopic transfer of visual-form adaptation across saccadic eye move- ments. Current biology, 15(19), 1745–8. doi:10.1016/j.cub.2005.08.044
  15. Watson, T. L., & Krekelberg, B. (2009). The relationship between saccadic suppression and per- ceptual stability. Current biology, 19(12), 1040–3. doi:10.1016/j.cub.2009.04.052
  16. Mikula, S., Trotts, I., Stone, J. M., & Jones, E. G. (2007). Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage, 35(1), 9–15. doi:10.1016/j.neuroimage.2006.11.053
  17. Trotts, I., Mikula, S., & Jones, E. G. (2007). Interactive visualization of multiresolution image stacks in 3D. NeuroImage, 35(3), 1038–43. doi:10.1016/j.neuroimage.2007.01.013
  18. Bachmann, T., Põder, E., & Luiga, I. (2004). Illusory reversal of temporal order: the bias to report a dimmer stimulus as the first. Vision Research, 44(3), 241–246. doi:10.1016/j.visres.2003.10.012
  19. Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision research, 48(20), 2070–89. doi:10.1016/j.visres.2008.03.021
  20. Burr, D. C., Morgan, M. J., & Morrone, M. C. (1999). Saccadic suppression precedes visual mo- tion analysis. Current biology, 9(20), 1207–9. doi:10.1016/S0960-9822(00)80028-7
  21. Hodinott-Hill, I., Thilo, K. V., Cowey, A., & Walsh, V. (2002). Auditory chronostasis: hanging on the telephone. Current biology, 12(20), 1779–81. doi:10.1016/S0960-9822(02)01219-8
  22. Yarrow, K., & Rothwell, J. C. (2003). Manual Chronostasis. Current Biology, 13(13), 1134–1139. doi:10.1016/S0960-9822(03)00413-5
  23. doi:10.1038/35104551
  24. Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371(6497), 511–3. doi:10.1038/371511a0
  25. Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Na- ture, 386(6625), 598–601. doi:10.1038/386598a0
  26. Duhamel, J.-R., Bremmer, F., Ben Hamed, S., & Graf, W. (1997). Spatial invariance of visual re- ceptive fields in parietal cortex neurons. Nature, 389(6653), 845–8. doi:10.1038/39865
  27. Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature neuroscience, 11(10), 1211–6. doi:10.1038/nn.2194
  28. Melcher, D., & Morrone, M. C. (2003). Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature neuroscience, 6(8), 877–81. doi:10.1038/nn1098
  29. Thilo, K. V., Santoro, L., Walsh, V., & Blakemore, C. (2004). The site of saccadic suppression. Na- ture neuroscience, 7(1), 13–4. doi:10.1038/nn1171
  30. Sincich, L. C., Park, K. F., Wohlgemuth, M. J., & Horton, J. C. (2004). Bypassing V1: a direct ge- niculate input to area MT. Nature neuroscience, 7(10), 1123–8. doi:10.1038/nn1318
  31. Morrone, M. C., Ross, J., & Burr, D. C. (2005). Saccadic eye movements cause compression of time as well as space. Nature neuroscience, 8(7), 950–4. doi:10.1038/nn1488
  32. Rose, D., & Summers, J. (1995). Duration illusions in a train of visual stimuli. Perception, 24(10), 1177–1187. doi:10.1068/p241177
  33. Hall, N. J., & Colby, C. L. (2011). Remapping for visual stability. Philosophical transactions of the Royal Society of London. Series B, 366(1564), 528–39. doi:10.1098/rstb.2010.0248
  34. De Boer, E., & Kuyper, P. (1968). Triggered Correlation. IEEE Transactions on Biomedical Engineer- ing, BME-15(3), 169–179. doi:10.1109/TBME.1968.4502561
  35. Osaka, N. (1987). Variation of saccadic suppression with target eccentricity. Ophthalmic & physio- logical optics, 7(4), 499–501. doi:10.1111/j.1475-1313.1987.tb00786.x
  36. doi:10.1113/jphysiol.2007.128801
  37. Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K.-P. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2. doi:10.1126/science.1068788
  38. Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? An- nual review of neuroscience, 16, 369–402. doi:10.1146/annurev.ne.16.030193.002101
  39. Hendry, S. H. C., & Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual re- view of neuroscience, 23, 127–53. doi:10.1146/annurev.neuro.23.1.127
  40. Krekelberg, B., & Albright, T. D. (2005). Motion mechanisms in macaque MT. Journal of neuro- physiology, 93(5), 2908–21. doi:10.1152/jn.00473.2004
  41. Priebe, N. J., Churchland, M. M., & Lisberger, S. G. (2002). Constraints on the source of short- term motion adaptation in macaque area MT. I. the role of input and intrinsic mechanisms. Jour- nal of neurophysiology, 88(1), 354–69. doi:10.1152/jn.00852.2001
  42. Mayo, J. P., & Sommer, M. a. (2008). Neuronal adaptation caused by sequential visual stimula- tion in the frontal eye field. Journal of neurophysiology, 100(4), 1923–35. doi:10.1152/jn.90549.2008
  43. Yarrow, K., Johnson, H., Haggard, P., & Rothwell, J. C. (2004). Consistent chronostasis effects across saccade categories imply a subcortical efferent trigger. Journal of cognitive neuroscience, 16(5), 839–47. doi:10.1162/089892904970780
  44. Knöll, J., Binda, P., Morrone, M. C., & Bremmer, F. (2011). Spatiotemporal profile of peri- saccadic contrast sensitivity. Journal of vision, 11(14), 15:1–12. doi:10.1167/11.14.15
  45. Chahine, G., & Krekelberg, B. (2009). Cortical contributions to saccadic suppression. PloS one, 4(9), e6900. doi:10.1371/journal.pone.0006900
  46. Crespi, S., Biagi, L., D'Avossa, G., Burr, D. C., Tosetti, M., & Morrone, M. C. (2011). Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PloS one, 6(7), e21661. doi:10.1371/journal.pone.0021661
  47. Vallines, I., & Greenlee, M. W. (2006). Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. The Journal of neuroscience, 26(22), 5965–9. doi:10.1523/JNEUROSCI.0817-06.2006
  48. Ibbotson, M. R., Crowder, N. A., Cloherty, S. L., Price, N. S. C., & Mustari, M. J. (2008). Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression. The Journal of neuroscience, 28(43), 10952–60. doi:10.1523/JNEUROSCI.3950-08.2008
  49. doi:10.1523/JNEUROSCI.4738-10.2011
  50. Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2008). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. The Journal of neuroscience, 28(15), 3988– 99. doi:10.1523/JNEUROSCI.5476-07.2008
  51. doi:10.1523/JNEUROSCI.5589-10.2011
  52. doi:10.1523/JNEUROSCI.5590-10.2011
  53. doi:10.1523/JNEUROSCI.6176-09.2010
  54. Tomassini, A., Gori, M., Burr, D. C., Sandini, G., & Morrone, M. C. (2011). Perceived duration of Visual and Tactile Stimuli Depends on Perceived Speed. Frontiers in integrative neuroscience, 5(September), 51. doi:10.3389/fnint.2011.00051
  55. doi:10.3758/BF03193722 d' Avossa, G., Tosetti, M., Crespi, S., Biagi, L., Burr, D. C., & Morrone, M. C. (2007). Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature neuroscience, 10(2), References 145
  56. Wichmann, F. a., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and good- ness of fit. Perception & Psychophysics, 63(8), 1293–1313. doi:10.3758/BF03194544 References 144
  57. Wichmann, F. a., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63(8), 1314–1329. doi:10.3758/BF03194545
  58. Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33(2), 113–120. doi:10.3758/BF03202828
  59. Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics, 45(2), 162–174. doi:10.3758/BF03208051
  60. Fischer, W. H., Schmidt, M., Stuphorn, V., & Hoffmann, K.-P. (1996). Response properties of re- lay cells in the A-laminae of the cat's dorsal lateral geniculate nucleus after saccades. Experi- mental brain research, 110(3), 435–45.
  61. Georg, K., & Lappe, M. (2007). Spatio-temporal contingency of saccade-induced chronostasis.
  62. Mitrani, L., Mateeff, S., & Yakimoff, N. (1970). Temporal and spatial characteristics of visual suppression during voluntary saccadic eye movement. Vision research, 10(5), 417–22.
  63. Perry, V. H., & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 12(4), 1125–37. References 140
  64. Sylvester, R., Haynes, J., & Rees, G. (2005). Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation. Current biology, 15(1), 37–41.
  65. Sumner, P., Adamjee, T., & Mollon, J. D. (2002). Signals invisible to the collicular and magnocel- lular pathways can capture visual attention. Current biology, 12(15), 1312–6. doi:10.1016/S0960- 9822(02)01020-5
  66. Benardete, E. A., & Kaplan, E. (1999). The dynamics of primate M retinal ganglion cells. Visual neuroscience, 16(2), 355–68.
  67. Bremmer, F., Graf, W., Ben Hamed, S., & Duhamel, J.-R. (1999). Eye position encoding in the ma- caque ventral intraparietal area (VIP). Neuroreport, 10(4), 873–8.
  68. Green, D. G. (1970). Regional variations in the visual acuity for interference fringes on the retina.
  69. Cassanello, C. R., & Ferrera, V. P. (2007a). Computing vector differences using a gain field-like mechanism in monkey frontal eye field. The Journal of physiology, 582(Pt 2), 647–64.
  70. Duhamel, J.-R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90–2.
  71. Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the pri- mate visual system: an integrated systems perspective. Science, 255(5043), 419–23.
  72. Matin, E., Clymer, A. B., & Matin, L. (1972). Metacontrast and saccadic suppression. Science, References 138
  73. Price, N. S. C., Ibbotson, M. R., Ono, S., & Mustari, M. J. (2005). Rapid processing of retinal slip during saccades in macaque area MT. Journal of neurophysiology, 94(1), 235–46.
  74. Cassanello, C. R., & Ferrera, V. P. (2007b). Visual remapping by vector subtraction: analysis of multiplicative gain field models. Neural computation, 19(9), 2353–86.
  75. Watson, T. L., & Krekelberg, B. (2011). An equivalent noise investigation of saccadic suppression.
  76. Berman, R. a, & Wurtz, R. H. (2010). Functional identification of a pulvinar path from superior colliculus to cortical area MT. The Journal of neuroscience, 30(18), 6342–54.
  77. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837. doi:10.1016/0042- 6989(95)00294-4
  78. Yarrow, K., Whiteley, L., Haggard, P., & Rothwell, J. C. (2006). Biases in the perceived timing of perisaccadic perceptual and motor events. Perception & psychophysics, 68(7), 1217–26.
  79. Rodman, H. R., Gross, C. G., & Albright, T. D. (1989). Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. The Journal of neuroscience, 9(6), 2033–50.
  80. Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. The Journal of neuroscience, 17(20), 7941–53.
  81. Albright, T. D., Desimone, R., & Gross, C. G. (1984). Columnar organization of directionally se- lective cells in visual area MT of the macaque. Journal of neurophysiology, 51(1), 16–31.
  82. DeYoe, E. a, & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in neurosciences, 11(5), 219–26.
  83. Priebe, N. J., & Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT. II. tuning of neural circuit mechanisms. Journal of neurophysiology, 88(1), 370–82.
  84. Schoppmann, A., & Hoffmann, K.-P. (1976). Continuous mapping of direction selectivity in the cat's visual cortex. Neuroscience letters, 2(4), 177–81.
  85. Noda, H. (1975). Depression in the excitability of relay cells of lateral geniculate nucleus follow- ing saccadic eye movements in the cat. The Journal of physiology, 249(1), 87–102.
  86. Stepniewska, I., Qi, H. X., & Kaas, J. H. (1999). Do superior colliculus projection zones in the in- ferior pulvinar project to MT in primates? The European journal of neuroscience, 11(2), 469–80.
  87. Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K.-P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of neurophysiology, 77(2), 944–61.
  88. van Essen, D. C., & Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual. Trends in Neuroscience, 6, 370–375.
  89. Kaiser, P. K., & Boynton, R. M. (1996). Human Color Vision (2nd ed., p. 652). Washington, DC: Opt. Soc. Am.
  90. Mikami, A., Newsome, W. T., & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex.
  91. Bremmer, F., Kubischik, M., Hoffmann, K.-P., & Krekelberg, B. (2009). Neural dynamics of sac- cadic suppression. The Journal of neuroscience, 29(40), 12374–83. doi:10.1523/JNEUROSCI.2908- 09.2009
  92. Constantinidis, C., & Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a dur- ing the delay periods of a spatial memory task. Journal of neurophysiology, 76(2), 1352–5. References 134
  93. DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in ma- caque area MT. The Journal of neuroscience, 19(4), 1398–415.
  94. Watanabe, M., & Rodieck, R. W. (1989). Parasol and midget ganglion cells of the primate retina.
  95. Kaneko, S., & Murakami, I. (2009). Perceived duration of visual motion increases with speed.
  96. Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K.-P., Zilles, K., et al. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287–96.
  97. Knöll, J. (2007). Raum-zeitliche Repräsentationen während Augenbewegungen. Diplomarbeit. Fachbe- reich Physik. Philipps-Universität Marburg.
  98. Ferrera, V. P., Nealey, T. A., & Maunsell, J. H. R. (1994). Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. The Journal of neu- roscience, 14(4), 2080–8.
  99. Paolini, M., Distler, C., Bremmer, F., Lappe, M., & Hoffmann, K. P. (2000). Responses to continu- ously changing optic flow in area MST. Journal of neurophysiology, 84(2), 730–43.
  100. Reppas, J. B., Usrey, W. M., & Reid, R. C. (2002). Saccadic eye movements modulate visual re- sponses in the lateral geniculate nucleus. Neuron, 35(5), 961–74.
  101. Uchikawa, K., & Sato, M. (1995). Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity. Journal of the Optical Society of America. A, References 143
  102. Burr, D. C., Ross, J., & Morrone, M. C. (1986). Seeing objects in motion. Proceedings of the Royal Society of London. Series B, 227(1247), 249–65.
  103. Berman, R. a, & Wurtz, R. H. (2011). Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. The Journal of neuroscience, 31(2), 373–84.
  104. II. Spatiotemporal range of directional interactions in MT and V1. Journal of neurophysiology, 55(6), 1328–39.
  105. Richmond, B. J., Optican, L. M., Podell, M., & Spitzer, H. (1987). Temporal encoding of two- dimensional patterns by single units in primate inferior temporal cortex. I. Response characteris- tics. Journal of neurophysiology, 57(1), 132–46.
  106. Diamond, M. R. (2002). The effect of saccades on visual sensitivity and time perception. PhD thesis. School of Psychology. University of Western Australia.
  107. Snowden, R. J., Treue, S., Erickson, R. G., & Andersen, R. A. (1991). The response of area MT and References 142
  108. Beyer, J. (2008). Topographie sakkadischer Fehlwahrnehmungen. Experiment und Theorie. Diplomar- beit. Fachbereich Physik. Philipps-Universität Marburg. References 132
  109. Qian, N., & Andersen, R. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. The Journal of neuroscience, 14(12), 7367–80.
  110. Morgan, M. J. (1994). Vision. When it pays not to see. Nature, 371(6497), 473. References 139
  111. Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414(6861), 302–5.
  112. Holt, E. B. (1903). Eye-Movement and Central Anaesthesia. In H. Münsterberg (Ed.), Harvard Psy- chological Studies, Volume 1 (pp. 3–46).
  113. Mikula, S., Stone, J. M., & Jones, E. G. (2008). BrainMaps.org -Interactive High-Resolution Digi- tal Brain Atlases and Virtual Microscopy. Brains, minds & media, 3, bmm1426.
  114. Diamond, M. R., Ross, J., & Morrone, M. C. (2000). Extraretinal control of saccadic suppression.
  115. Hartmann, T. S., Bremmer, F., Albright, T. D., & Krekelberg, B. (2011). Receptive field positions in area MT during slow eye movements. The Journal of neuroscience, 31(29), 10437–44.
  116. Morris, A. P., Kubischik, M., Hoffmann, K.-P., Krekelberg, B., & Bremmer, F. (2012). Dynamics of eye-position signals in the dorsal visual system. Current biology, 22(3), 173–9.
  117. Dacey, D. M., & Petersen, M. R. (1992). Dendritic field size and morphology of midget and para- sol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9666–70.
  118. Volkmann, F. C. (1986). Human visual suppression. Vision Research, 26(9), 1401–1416.
  119. Ong, W. S., & Bisley, J. W. (2011). A lack of anticipatory remapping of retinotopic receptive fields in the middle temporal area. The Journal of neuroscience, 31(29), 10432–6.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten