Publikationsserver der Universitätsbibliothek Marburg

Titel: Molekulare Determinanten der Dephosphorylierung und Genaktivierung des Signaltransduktors und Aktivators der Transkription 1
Autor: Staab, Julia
Weitere Beteiligte: Essen, Lars-Oliver (Prof. Dr.)
Erscheinungsjahr: 2011
URI: https://archiv.ub.uni-marburg.de/diss/z2011/0478
URN: urn:nbn:de:hebis:04-z2011-04781
DOI: https://doi.org/10.17192/z2011.0478
DDC: 540 Chemie
Titel(trans.): Molecular determinants of dephosphorylation and gene activation of the signal transducer and activator of transcription 1

Dokument

Schlagwörter:
gene activation, dephosphorylation, STAT1, Linker-Domäne, Dephosphorylierung, STAT1, linker domain, Signaltransduktion, Genaktivierung, signaltransductor

Zusammenfassung:
Bei den STAT-Proteinen handelt es sich um eine evolutionär hochkonservierte Proteinfamilie, die aus sechs funktionellen Domänen aufgebaut ist. Obgleich die Linker-Domäne, die zwischen der aminoterminal davon gelegenen DNA-Binde- und der carboxyterminal positionierten SH2-Domäne lokalisiert ist, einen zentralen Bereich in der modularen Molekülorganisation beansprucht, ist über deren physiologische Bedeutung bislang vergleichsweise wenig bekannt. In früheren Arbeiten konnte gezeigt werden, dass die Linker-Domäne von STAT1 einen Einfluss auf DNA-Bindung und transkriptionelle Aktivität besitzt; jedoch konnte der molekulare Mechanismus dafür nicht identifiziert werden. Um einen besseren Einblick in die Rolle der Linker-Domäne im Zusammenhang von DNA-Bindung und Zielgenerkennung zu gewinnen, wurden Punktmutanten einzelner konservierter Aminosäurereste des STAT1-Moleküls generiert und diese funktionell charakterisiert. Die Substitutionsmutation eines konservierten Glutamatrests in Position 500 führte zu einer verbesserten transkriptionellen Aktivität nach IFN -Stimulation, während sich Phosphorylierungs- und Kernakkumulationskinetik sowie DNA-Bindeaffinität nicht vom Wildtyp-Molekül unterschieden. Die IFN -abhängige Zielgenaktivierung war im Gegensatz zur IFN -vermittelten Signalantwort jedoch supprimiert. Dieses zeigt, dass die Linker-Domäne ursächlich an einer differentiellen, ligandenabhängigen Gen-aktivierung beteiligt ist. Des Weiteren konnte eine Beteiligung der Linker-Domäne an der Dephosphorylierung von STAT1 nachgewiesen werden. Die Mutation eines hochkonservierten Lysinrests in Position 525 führte zum Verlust einer für die Stabilisierung der parallelen Dimerkonformation essentiellen Salzbrücke mit einem kritischen Glutamatrest der SH2-Domäne des gleichen Monomers. Dieser Stabilitätsverlust scheint das Gleichgewicht der Konformere im STAT1-Dimer zugunsten der antiparallelen Dimerkonformation zu verschieben, wobei die anti-parallele Konformation von der STAT1-inaktivierenden Phosphatase bevorzugt wird. Durch Dephosphorylierungsassays konnte gezeigt werden, dass die K525A-Mutante gegenüber dem Wildtyp-Protein ein bevorzugtes Substrat der nukleären T-Zell-Phosphatase ist. Dies resultiert nach Stimulation mit IFN in einer erhöhten In-vivo- und In-vitro-Dephosphorylierungsrate, verminderten Tyrosin-Phosphorylierung, reduzierten Kernakkumulation und einer konsekutiv verminderten Genaktivierung in vivo. Um einen besseren Einblick in die DNA-Bindung von STAT1 zu gewinnen, wurde zusätzlich eine weitere Mutante der DNA-Bindedomäne charakterisiert, die im Gegensatz zu anderen DNA-Bindemutanten nicht in direktem Kontakt mit der DNA-Helix steht, aber in ihrer Affinität zur DNA inhibiert ist. Wie mit Hilfe dieser Struktur-mutante gezeigt werden konnte, haben nicht nur Aminosäuren, die in direktem Kontakt mit der DNA stehen einen Einfluss auf die DNA-Bindung, sondern auch solche, die an der Bildung der dreidimensionalen Domänenstruktur beteiligt sind.

Summary:
STAT proteins are members of an evolutionary highly conserved protein family. They consist of a modular domain structure with six well-characterized functional domains. The linker domain, which connects the amino-terminal DNA-binding domain with the carboxy-terminal SH2-domain, is known to be engaged in DNA binding and transcriptional activation. However, the molecular mechanisms regulating transcriptional modulation by the linker domain are largely unknown. To gain a deeper insight into the role of this domain in DNA-binding and transcriptional activation, point mutants in the linker domain of STAT1 were generated and functionally characterized. The substitution of a conserved glutamate residue in position 500 resulted in enhanced transcriptional activation of IFN -sensitive genes, whereas tyrosine phosphorylation and nuclear accumulation were both similar to the wild-type protein. In contrast, target gene activation after stimulation with IFN was significantly reduced. This observation shows that the linker domain is responsible for ligand-dependent differential gene activation. Furthermore, it was demonstrated that the linker domain contributes to the inactivation of tyrosine-phosphorylated STAT1. Mutation of a highly conserved lysine residue in position 525 led to the disruption of a salt bridge with a glutamate residue in the SH2 domain of the same monomer. This salt bridge appears to be essential for the stabilization of parallel STAT1 dimers. Loss of this stabilization leads to a shift of STAT1 dimers to the antiparallel conformation. As compared to the wild-type protein, destabilizing this interaction resulted in a mutant with diminished nuclear accumulation, reduced tyrosine phosphorylation and target gene activation upon stimulation of cells with IFN . Further experiments including in vitro assays demonstrated that the inactivating T-cell phosphatase preferentially dephosphorylates STAT1-K525A as compared to the wild-type protein. To get further insight of the DNA-binding of STAT1 a point mutant of the DNA-binding domain was characterized. In contrast to other DNA-binding mutants this mutant has no direct contacts to DNA, but nevertheless showed a reduced affinity to DNA. This mutant shows that the architecture of the whole domain is required for functional DNA-binding.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten