Publikationsserver der Universitätsbibliothek Marburg

Titel:Analyse der subzellulären Lokalisation des C-Signalvorläuferproteins p25 und die Identifikation der PopC-Spaltstelle in p25 in Myxococcus xanthus
Autor:Ammon, Meike
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0078
DOI: https://doi.org/10.17192/z2011.0078
URN: urn:nbn:de:hebis:04-z2011-00780
DDC: Biowissenschaften, Biologie
Titel (trans.):Analysis of the subcellular localization of the C-signal precursor p25 and identification of the PopC cleavage site in p25 in Myxococcus xanthus
Publikationsdatum:2011-03-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
C-Signal, Proteolyse, Subtilase, Fruchtkörperbildung, Development, Myxococcus xanthus, Serinproteinasen

Zusammenfassung:
Myxococcus xanthus ist ein Bakterium, das ein außergewöhnliches Verhalten bei Nährstoffmangel zeigt. Im Zuge eines Entwicklungszyklus bilden diese Bakterien Fruchtkörper, die mit Dauerformen, den sogenannten Myxosporen gefüllt sind, um die lebensbedrohlichen Umweltbedingungen zu überstehen. Sechs Stunden nach Eintritt des Hungerzustandes koordiniert und reguliert das C Signal die Aggregation der Zellen zur Fruchtkörperbildung, die Sporulation der Zellen zu Myxosporen und eine spezifische Genexpression. Beim C Signal handelt es sich um das 17 kDa große Protein p17, welches nach der Prozessierung des C Signalvorläuferproteins p25 durch die Subtilisin-ähnliche Serinprotease PopC entsteht. In dieser Arbeit sollte zum einen die Orientierung von p25 in der äußeren Membran untersucht und zum anderen die PopC-Spaltstelle in p25 identifiziert werden. Um die subzelluläre Lokalisation von p25 zu untersuchen, wurden intakte Zellen mit einer unspezifischen Protease behandelt. Anschließend wurde in Immunoblot Analysen geprüft, ob p25 im Vergleich zu Kontrollproteinen degradiert wird. p25 zeigte ein identisches Verhalten wie das Kontrollprotein PilQ, ein Protein der äußeren Membran, welches auf der Zelloberfläche exponiert ist. Als weitere Kontroll-proteine dienten Tgl, ein Protein der äußeren Membran, das ins Periplasma ragt, und PilC, ein Protein der inneren Membran. Tgl und PilC wurden im Gegensatz zu PilQ und p25 weniger stark degradiert. Daher deuten die Ergebnisse darauf hin, dass p25 auf der Zelloberfläche exponiert ist. Um die PopC-Spaltstelle zu identifizieren, wurden biochemische und genetische Strategien verfolgt. Synthetische Peptide wurden herangezogen, um die PopC-Spaltung zu analysieren. Der N-Terminus von p17 sollte mittels Massenspektrometrie bestimmt werden. Außerdem wurde die Spaltung von verkürzten MalE-p25 Deletionsderivaten und Alaninsubstitutionsmutanten durch gereinigtes PopC Protein in vitro untersucht. Damit wurde das Spaltmotiv in p25 auf die Aminosäuren 56LDV58 eingegrenzt. Die Untersuchungen von Alanin-substitutionen in vitro und in vivo lassen schlussfolgern, dass Aspartat 57 essentiell für die PopC-Spaltung in M. xanthus ist. Daher deuten die Daten darauf hin, dass PopC p25 im Spaltmotiv 56LDV58 nach Aspartat 57 spaltet.

Bibliographie / References

  1. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Rolbetzki, A. (2007).Aktivierung eines kontakt-abhängigen Signalsystems durch regulierte Proteolyse in Myxococcus xanthus: Philipps-Universität Marburg.
  3. Rockwell, N. C., Krysan, D. J., Komiyama, T. & Fuller, R. S. (2002). Precursor processing by kex2/furin proteases. Chem Rev 102, 4525-4548.
  4. Nariya, H. & Inouye, M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66.
  5. Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell 15, 627-634.
  6. Wu, S. S., Wu, J. & Kaiser, D. (1997). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23, 109-121.
  7. Ellehauge, E., Norregaard-Madsen, M. & Sogaard-Andersen, L. (1998). The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30, 807-817.
  8. Garza, A. G., Harris, B. Z., Pollack, J. S. & Singer, M. (2000). The asgE locus is required for cell-cell signalling during Myxococcus xanthus development. Mol Microbiol 35, 812-824.
  9. Kruse, T., Lobedanz, S., Berthelsen, N. M. & Sogaard-Andersen, L. (2001). C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol Microbiol 40, 156-168.
  10. Rawlings, N. D. & Barrett, A. J. (1999). MEROPS: the peptidase database. Nucleic Acids Res 27, 325-331.
  11. Harris, B. Z., Kaiser, D. & Singer, M. (1998). The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 12, 1022-1035.
  12. Li, S., Lee, B. U. & Shimkets, L. J. (1992). csgA expression entrains Myxococcus xanthus development. Genes Dev 6, 401-410.
  13. Singer, M. & Kaiser, D. (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9, 1633- 1644.
  14. Lee, B. U., Lee, K., Mendez, J. & Shimkets, L. J. (1995). A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein. Genes Dev 9, 2964-2973.
  15. Wu, S. S. & Kaiser, D. (1995). Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18, 547-558.
  16. Spyranti, Z., Galanis, A. S., Pairas, G., Spyroulias, G. A., Manessi-Zoupa, E. & Cordopatis, P. (2010). Synthetic peptides as structural maquettes of Angiotensin-I converting enzyme catalytic sites. Bioinorg Chem Appl, 820476.
  17. Kaplan, H. B. & Plamann, L. (1996). A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 139, 89-95.
  18. Konovalova, A., Petters, T. & Sogaard-Andersen, L. (2010). Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34, 89-106.
  19. Sogaard-Andersen, L. (2004). Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol 7, 587-593.
  20. Sogaard-Andersen, L., Overgaard, M., Lobedanz, S., Ellehauge, E., Jelsbak, L. & Rasmussen, A. A. (2003). Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol Microbiol 48, 1-8.
  21. Yen, M. R., Tseng, Y. H., Nguyen, E. H., Wu, L. F. & Saier, M. H., Jr. (2002). Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177, 441-450.
  22. Siezen, R. J. & Leunissen, J. A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6, 501-523.
  23. AasP autotransporter protein of Actinobacillus pleuropneumoniae does not protect pigs against homologous challenge. Vaccine 27, 5278-5283.
  24. Kroos, L., Hartzell, P., Stephens, K. & Kaiser, D. (1988). A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev 2, 1677-1685.
  25. Davis, J. M., Mayor, J. & Plamann, L. (1995). A missense mutation in rpoD results in an A- signalling defect in Myxococcus xanthus. Mol Microbiol 18, 943-952.
  26. Hedstrom, L. (2002b). An overview of serine proteases. Curr Protoc Protein Sci Chapter 21, Unit 21 10.
  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
  28. Hosaka, M., Nagahama, M., Kim, W. S., Watanabe, T., Hatsuzawa, K., Ikemizu, J., Murakami, K. & Nakayama, K. (1991). Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 266, 12127- 12130.
  29. Cho, K. & Zusman, D. R. (1999). AsgD, a new two-component regulator required for A- signalling and nutrient sensing during early development of Myxococcus xanthus. Mol Microbiol 34, 268-281.
  30. Williams, P. (2007). Bacillus subtilis: a shocking message from a probiotic. Cell Host Microbe 1, 248-249.
  31. Ng, W. L. & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annu Rev Genet 43, 197-222.
  32. Toure, B. B., Munzer, J. S., Basak, A., Benjannet, S., Rochemont, J., Lazure, C., Chretien, M. & Seidah, N. G. (2000). Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J Biol Chem 275, 2349-2358.
  33. Dworkin, M. (1973). Cell-cell interactions in the myxobacteria. Symp Gen Microbiol 23, 125– 142.
  34. Plamann, L., Kaplan, H.B. (1999). Cell-density sensing during early development in Myxococcus xanthus. Washington, DC: American Society for Microbiology.
  35. Kim, S. K. & Kaiser, D. (1990b). C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61, 19-26.
  36. Ijaz, M. K., Alkarmi, T. O., Sabara, M. I. & other authors (1995). Characterization of a synthetic peptide mimicking trypsin-cleavage site of rotavirus VP4. Comp Immunol Microbiol Infect Dis 18, 145-160.
  37. Saeki, K., Ozaki, K., Kobayashi, T. & Ito, S. (2007). Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103, 501-508.
  38. O'Connor, K. A. & Zusman, D. R. (1991). Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173, 3318-3333.
  39. Hillesland, K. L., Lenski, R. E. & Velicer, G. J. (2007). Ecological variables affecting predatory success in Myxococcus xanthus. Microb Ecol 53, 571-578.
  40. Plamann, L., Davis, J. M., Cantwell, B. & Mayor, J. (1994). Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J Bacteriol 176, 2013-2020.
  41. Shimkets, L. J. & Dworkin, M. (1981). Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev Biol 84, 51-60.
  42. Kroos, L. & Kaiser, D. (1987). Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev 1, 840-854.
  43. Ogawa, M., Fujitani, S., Mao, X., Inouye, S. & Komano, T. (1996). FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22, 757-767.
  44. Manoil, C. & Kaiser, D. (1980b). Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141, 305-315.
  45. Lebenslauf Persönliche Angaben Name Meike Ammon Geburtsdatum 24.04.1978 in Nordenham Ausbildungsdaten 10/2001-10/2006 Studium der Biologie an der Philipps-Universität, Marburg Schwerpunkte: Mikrobiologie, Tierphysiologie, Virologie, Parasitologie 12/2005-09/2006 Diplomarbeit in der Abteilung Ökophysiologie (AG Hedderich) am Max-Planck-Institut für terrestrische Mikrobiologie, Marburg: Heterologe Expression und Aufreinigung des " Forkhead- associated-domain " -Proteins MXAN4899 aus Myxococcus xanthus 10/2006 Diplom in Biologie (Dipl. Biol.)
  46. Lobedanz, S. & Sogaard-Andersen, L. (2003). Identification of the C-signal, a contact- dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus.
  47. Weis, S. (2007).Identifizierung und Charakterisierung zweier für die Entwicklung essentieller Serin/Threonin-Proteinkinasen in Myxococcus xanthus. In Fachbereich Biologie: Philipps- Universität Marburg.
  48. Avery, L. & Kaiser, D. (1983). In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol Gen Genet 191, 99-109.
  49. Kuspa, A., Kroos, L. & Kaiser, D. (1986). Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol 117, 267-276.
  50. Rockwell, N. C. & Fuller, R. S. (1998). Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biochemistry 37, 3386-3391.
  51. Barr, P. J. (1991). Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1-3.
  52. Barrett, A. J., Tolle, D. P. & Rawlings, N. D. (2003). Managing peptidases in the genomic era. Biol Chem 384, 873-882.
  53. Turk, B. E. (2009). Mixture-based peptide libraries for identifying protease cleavage motifs. Methods Mol Biol 539, 79-91.
  54. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.
  55. Kimura, Y., Saiga, H., Hamanaka, H. & Matoba, H. (2006). Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol 184, 387-396.
  56. Thaxter, R. (1892). On the Myxobacteriaceae, a new order of Schizomycetes. Bot Gaz 17, 389- 406.
  57. Schechter, I. & Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157-162.
  58. Nudleman, E., Wall, D. & Kaiser, D. (2006). Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60, 16-29.
  59. Seidah, N. G., Day, R., Marcinkiewicz, M. & Chretien, M. (1998). Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci 839, 9-24.
  60. Seidah, N. G. & Prat, A. (2002). Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38, 79-94.
  61. Gerlach, R. G. & Hensel, M. (2007). Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297, 401-415.
  62. Miller, I., Crawford, J. & Gianazza, E. (2006). Protein stains for proteomic applications: which, when, why? Proteomics 6, 5385-5408.
  63. Waters, C. M. & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319-346.
  64. Viswanathan, P., Murphy, K., Julien, B., Garza, A. G. & Kroos, L. (2007). Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR- associated genes and repeats. J Bacteriol 189, 3738-3750.
  65. Andersen, L. (2010). Regulation of dynamic polarity switching in bacteria by a Ras-like G- protein and its cognate GAP. Embo J 29, 2276-2289.
  66. Viswanathan, P., Singer, M. & Kroos, L. (2006). Role of sigmaD in regulating genes and signals during Myxococcus xanthus development. J Bacteriol 188, 3246-3256.
  67. Page, M. J. & Di Cera, E. (2008). Serine peptidases: classification, structure and function. Cell Mol Life Sci 65, 1220-1236.
  68. Hedstrom, L. (2002a). Serine protease mechanism and specificity. Chem Rev 102, 4501-4524.
  69. Kaiser, D. (2004). Signaling in myxobacteria. Annu Rev Microbiol 58, 75-98.
  70. Magrini, V., Storms, M. L. & Youderian, P. (1999). Site-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification. J Bacteriol 181, 4062-4070.
  71. Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 49, 529- 539.
  72. Hagen, D. C., Bretscher, A. P. & Kaiser, D. (1978). Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol 64, 284-296.
  73. Locht, C., Bertin, P., Menozzi, F. D. & Renauld, G. (1993). The filamentous haemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol Microbiol 9, 653-660.
  74. Chen, Y. J. & Inouye, M. (2008). The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 18, 765-770.
  75. Rockwell, N. C. & Thorner, J. W. (2004). The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci 29, 80-87.
  76. Plamann, L., Li, Y., Cantwell, B. & Mayor, J. (1995). The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 177, 2014-2020.
  77. Seidah, N. G., Khatib, A. M. & Prat, A. (2006). The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol Chem 387, 871-877.
  78. Blow, D. M. (1997). The tortuous story of Asp ... His ... Ser: structural analysis of alpha- chymotrypsin. Trends Biochem Sci 22, 405-408.
  79. Mazar, J. & Cotter, P. A. (2006). Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. Mol Microbiol 62, 641-654.
  80. Gronewold, T. M. & Kaiser, D. (2001). The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40, 744-756.
  81. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem 268, 26461-26465.
  82. Licking, E., Gorski, L. & Kaiser, D. (2000). A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182, 3553- 3558.
  83. Wall, D., Kolenbrander, P. E. & Kaiser, D. (1999). The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181, 24-33.
  84. Wall, D., Wu, S. S. & Kaiser, D. (1998). Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol 180, 759-761.
  85. Baker, M. E. (1994). Myxococcus xanthus C-factor, a morphogenetic paracrine signal, is similar to Escherichia coli 3-oxoacyl-[acyl-carrier-protein] reductase and human 17 beta-hydroxysteroid dehydrogenase. Biochem J 301 ( Pt 1), 311-312.
  86. Lenz, O., ter Meulen, J., Feldmann, H., Klenk, H. D. & Garten, W. (2000). Identification of a novel consensus sequence at the cleavage site of the Lassa virus glycoprotein. J Virol 74, 11418-11421.
  87. Roebroek, A. J., Schalken, J. A., Leunissen, J. A., Onnekink, C., Bloemers, H. P. & Van de Ven, W. J. (1986). Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptor-like protein. Embo J 5, 2197-2202.
  88. Kaiser, D. (1993). Roland Thaxter's legacy and the origins of multicellular development. Genetics 135, 249-254.
  89. Nakayama, K. (1997). Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327 ( Pt 3), 625-635.
  90. Jelsbak, L. & Sogaard-Andersen, L. (2002). Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc Natl Acad Sci U S A 99, 2032-2037.
  91. Coutte, L., Antoine, R., Drobecq, H., Locht, C. & Jacob-Dubuisson, F. (2001). Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. Embo J 20, 5040-5048.
  92. Sanford, R. A., Cole, J. R. & Tiedje, J. M. (2002). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68, 893-900.
  93. Goldman, B. S., Nierman, W. C., Kaiser, D. & other authors (2006). Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103, 15200-15205.
  94. Rodriguez-Soto, J. P. & Kaiser, D. (1997). The tgl gene: social motility and stimulation in Myxococcus xanthus. J Bacteriol 179, 4361-4371.
  95. Plamann, L., Kuspa, A. & Kaiser, D. (1992). Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J Bacteriol 174, 3311-3318.
  96. Downard, J., Ramaswamy, S. V. & Kil, K. S. (1993). Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J Bacteriol 175, 7762- 7770.
  97. Kim, S. K. & Kaiser, D. (1991). C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J Bacteriol 173, 1722-1728.
  98. Bresnahan, P. A., Leduc, R., Thomas, L., Thorner, J., Gibson, H. L., Brake, A. J., Barr, P. J. & Thomas, G. (1990). Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol 111, 2851-2859.
  99. Shimkets, L. J. & Rafiee, H. (1990). CsgA, an extracellular protein essential for Myxococcus xanthus development. J Bacteriol 172, 5299-5306.
  100. Kuner, J. M. & Kaiser, D. (1982). Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151, 458-461.
  101. Rosenberg, E., Keller, K. H. & Dworkin, M. (1977). Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129, 770-777.
  102. Wireman, J. W. & Dworkin, M. (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129, 798-802.
  103. Dworkin, M. (1996). Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60, 70-102.
  104. Sudo, S. & Dworkin, M. (1972). Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110, 236-245.
  105. Functional characterization of AasP, a maturation protease autotransporter protein of Actinobacillus pleuropneumoniae. Infect Immun 76, 5608-5614.
  106. Berleman, J. E. & Kirby, J. R. (2009). Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33, 942-957.
  107. Bulyha, I., Schmidt, C., Lenz, P., Jakovljevic, V., Hone, A., Maier, B., Hoppert, M. & Sogaard-Andersen, L. (2009). Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74, 691-706.
  108. Shah, I. M. & Dworkin, J. (2009). Microbial interactions: bacteria talk to (some of) their neighbors. Curr Biol 19, R689-691.
  109. Manoil, C. & Kaiser, D. (1980a). Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J Bacteriol 141, 297-304.
  110. Sudo, S. Z. & Dworkin, M. (1969). Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol 98, 883-887.
  111. Hart, B. A. & Zahler, S. A. (1966). Lytic enzyme produced by Myxococcus xanthus. J Bacteriol 92, 1632-1637.
  112. Shimkets, L. J. (1990). Social and developmental biology of the myxobacteria. Microbiol Rev 54, 473-501.
  113. Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57, 50-108.
  114. Economou, A., Christie, P. J., Fernandez, R. C., Palmer, T., Plano, G. V. & Pugsley, A. P. (2006). Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 62, 308-319.
  115. Shimkets, L. J., Gill, R. E. & Kaiser, D. (1983). Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci U S A 80, 1406-1410.
  116. Sogaard-Andersen, L. & Kaiser, D. (1996). C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci U S A 93, 2675-2679.
  117. Kaiser, D. (1979). Social gliding is correlated with the presence of pili in Myxococcus xanthus.
  118. Sager, B. & Kaiser, D. (1993). Two cell-density domains within the Myxococcus xanthus fruiting body. Proc Natl Acad Sci U S A 90, 3690-3694.
  119. Kim, S. K. & Kaiser, D. (1990a). Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc Natl Acad Sci U S A 87, 3635-3639.
  120. Ueki, T. & Inouye, S. (2005). Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J Biol Chem 280, 32279-32284.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten