Wirt/Gast-Beziehungen in Bassanit

H. Voigtländer, W. Depmeier, B. Winkler, K. Knorr und L. Ehm Institut für Geowissenschaften, Universität Kiel, 24098 Kiel, Germany

Einleitung

Bassanit CaSO₄ \cdot 0,5 H₂O

Kristallstruktur des Gerüstes ist bekannt (Abb. 1)

- \rightarrow isotyp mit γ -CaSO₄ (Anhydrit III)
- CaO_8 -/ CaO_9 -Polyederund SO_4 -Tetraeder
- Polyederketten | [001]
- Kanäle || [001] mit $\emptyset = 4.5$ Å

Einlagerung von Gästen in Kanäle möglich

- $\Rightarrow CaSO_4 \cdot x H_2O \text{ mit } 0 \leq x \leq (0.8)$
- \Rightarrow Methanol

Fragestellungen

- →Wechselwirkungen der Gäste mit Gerüst?
- \rightarrow Molekulare Dynamik des H₂O?

Untersuchungsmethoden

Röntgenbeugung als f(p) \rightarrow DAC + IP (Abb. 2,3,4) Neutronenbeugung

- \rightarrow als f(p) \rightarrow Kiel-Berlin-Zelle
- \rightarrow als f(T) \rightarrow hochauflösend (+ D₂O) (Abb. 7)

Computer-Experimente

 \rightarrow DFT, GGA, ultraweiche Pseudopotentiale

 $^{1}\text{H-NMR-Spektroskopie}$ als f(T)

 ${\bf Dielektrische\ Verlustmessungen}$

Spektroskopie mit Neutronen

- \rightarrow inelastisch inkohärent (Abb. 5,6)
- \rightarrow tief-inelastisch

Synthesen mit größeren Gästen

Durch die **Kombination** der verschiedenen Methoden soll die Stärke der Wirt/Gast-Wechselwirkungen als f(p,T,x) untersucht werden. Damit soll ein tiefergehendes Verständnis der Dynamik der Gäste erzielt werden.

Erste Ergebnisse

Bestimmung des Kompressionsmoduls aus DAC-Versuchen

 \Rightarrow B₀ = 68(2) GPa, B'=4 (fix)

Übereinstimmung mit theoretischem Wert für γ -CaSO₄

 \Rightarrow Kompressionsmodul durch Einbau H₂O kaum verändert

Aus Neutronenspektroskopie

- \Rightarrow $\rm H_2O$ dynamisch fehlgeordnet
- \Rightarrow Änderung der Dynamik bei 30 K

Aus Neutronenbeugung

 \Rightarrow vermutlich keine langreichweitige Ordnung von H₂O

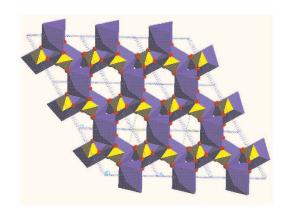


Abb. 1: Kristallstruktur von Bassanit ||[001]

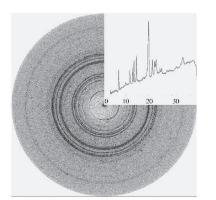


Abb. 2: Mit DAC/IP aufgenommenes Pulverdiffraktogramm

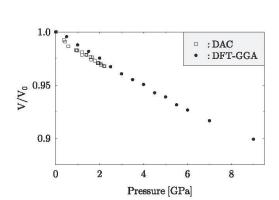


Abb. 4: Vergleich der Zustandsgleichungen von Bassanit mit theoretischen Daten für γ -CaSO₄

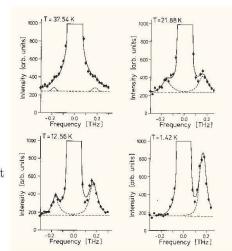


Abb. 6: Inelastische Neutronenstreuung: Änderung der Dynamik der H_2O -Moleküle. Oberhalb 30 K sind die H_2O -Moleküle dynamisch fehlgeordnet, bei tiefen Temperaturen kann man Translationsbewegungen beobachten.

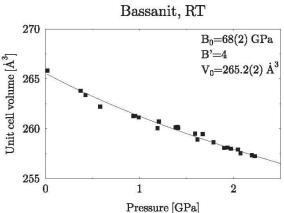


Abb. 3: V-p-Diagramm mit angepaßter Zustandsgleichung

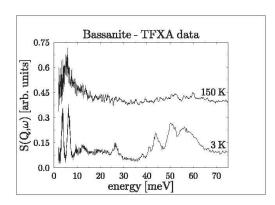


Abb. 5: Neutronen-Spektroskopie: Beleg für die Änderung der Dynamik von H_2O als f(T)

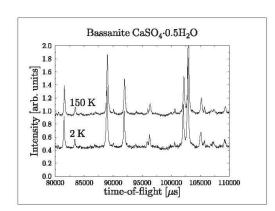


Abb. 7: Hochauflösende Neutronenbeugung zeigt keine langreichweitige Ordnung bei tiefen Temperaturen. Durch Einbau von D_2O soll in zukünftigen Experimenten der Untergrund stark reduziert werden.