Statistical Analysis of Audio Signals using Time-Frequency Analysis

In this thesis, we provide nonparametric estimation of signals corrupted by stationary noise in the white noise model. We derive adaptive and rate-optimal estimators of signals in modulation spaces by thresholding the coefficients obtained from the Gabor expansion. The rates obtained using the class...

Full description

Saved in:
Bibliographic Details
Main Author: Tafo Noutseche, Idris Pavel
Contributors: Holzmann, Hajo (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2023
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this thesis, we provide nonparametric estimation of signals corrupted by stationary noise in the white noise model. We derive adaptive and rate-optimal estimators of signals in modulation spaces by thresholding the coefficients obtained from the Gabor expansion. The rates obtained using the classical oracle inequalities of Donoho and Johnstone (1994) exhibit new features that reflect the inclusion of both time and frequency. The scope of our results is extended to alpha-modulation spaces in the one-dimensional setting, allowing a comparison with Sobolev and Besov spaces. To confirm the practical applicability of our methods, we perform extensive simulations. These simulations evaluate the performance of our methods in comparison to state-of-the-art methods over a range of scenarios.
DOI:10.17192/z2023.0666