Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models...

Full description

Saved in:
Bibliographic Details
Main Author: Kosiol, Jens
Contributors: Taentzer, Gabriele (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2022
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geändert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung für das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geändert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte Ansätze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geändert wurde, können während eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurückfallen Konsistenz dadurch wiederherzustellen, dass sie das geänderte Modell (bzw. große Teile von ihm) neu übersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstützt (Attribute und negative Constraints), durchgängig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen Ansätzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nämlich Korrektheit, Vollständigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf Neuübersetzung zurückzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende Beiträge zur Theorie der algebraischen Graphtransformation. Zunächst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln führt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher müssen wir sicherstellen, dass die für Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gültig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhält, die nötig sind, um die Theorie für Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsätzlichen Beiträge es uns, unsere Lösung für das grundlegende Modellsynchronisationsproblem vollständig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.