On the representation theory of braided Hopf-algebras.

The body of work is designed for the representation theory of deformed Fomin-Kirillov algebras using Gabriel’s theorem. In particular, we proved that for the spacial case of n= 4. The basic deformation admits a decomposition into Nil-Coxeter algebras of type S4 while the non-basic deformation admits...

Full description

Saved in:
Bibliographic Details
Main Author: Alia, Abdalla
Contributors: Heckenberger, István (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2022
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

Diese Dissertation befasst sich mit der Darstellungstheorie von braided Hopf-Algebren, insbesondere haben wir die nicht semi-simple PBW-Deformation von Fokin-Kirillov-Algebren mit Hilfe des Satzes von Gabriel Theorie für den Fall n=4 untersucht. Tatsächlich haben wir verifiziert, dass die Basic Verformung einen projektiven Modul in eine abgestufte Nil-Coxeter-Algebra zulässt, während die andere einer Algebra entspricht, die einen projektiven Modul in eine nicht abgestufte symmetrische Algebra über eine Morita-Äquivalenz zulässt. Darüber hinaus haben wir die graphbasierten pbw-Deformations-Subalgebren untersucht und herausgefunden, dass diejenigen, die auf dem Dunkin-Quiver vom Typ A_n basieren, isomorph zu Iwahori-Hecke-Algebren sind, was es uns ermöglichte, eine äquivalente Bedingung für die Semi simplicity implizit vom Typ D_n bereitzustellen.