Seshadri-Konstanten auf Abelschen Flächen

In der vorliegenden Arbeit werden Seshadri-Konstanten auf abelschen Flächen untersucht. Auf abelschen Flächen mit Picardzahl 1 gelang es Bauer (1999) die Seshadri-Konstanten vollständig zu berechnen. In den verbleibenden Picardzahlen 2, 3 und 4 lagen bisher nur Ergebnisse zu einigen Selbstprodukten...

Full description

Saved in:
Bibliographic Details
Main Author: Schmidt, Maximilian
Contributors: Bauer, Thomas (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2021
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

In the present thesis, Seshadri constants on abelian surfaces are studied. On abelian surfaces with Picard number 1, Bauer (1999) succeeded in computing all Seshadri constants. In the remaining cases, only some self-products of elliptic curves were solved by Bauer and Schulz (2008). In this thesis, new methods are developed which enable the calculation of all Seshadri constants on abelian surfaces with Picard number 2 and even plot the Seshadri function. The methods also give some insight on the structure of the Seshadri function and reveal that the Seshadri function is of the same baffling complexity as the Cantor function. In Picard number 3 and 4, further results are obtained for products of elliptic curves by considering and completly answering the question whether all Seshadri constants are intergers.