Quadruple covers and Gorenstein stable surfaces with K^2=1 and χ=2
In this thesis we study Gorenstein stable surfaces with K 2X = 1 and \chi(\ko_X) = 2. These arise as quadruple covers of the projective plane and we give the precise relation between the structure of the cover and the canonical ring. We then use these results to study some strata of the moduli sp...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2021
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this thesis we study Gorenstein stable surfaces with K 2X = 1 and \chi(\ko_X) = 2. These arise as quadruple covers of the projective plane and we give the precise relation between the structure of the cover and the canonical ring. We then use these results to study some strata of the moduli space \overline{\mathfrak{M}_1,2. |
---|---|
Physical Description: | 85 Pages |
DOI: | 10.17192/z2021.0299 |