High-dimensional, robust, heteroscedastic variable selection with the adaptive LASSO, and applications to random coefficient regression
In this thesis, theoretical results for the adaptive LASSO in high-dimensional, sparse linear regression models with potentially heavy-tailed and heteroscedastic errors are developed. In doing so, the empirical pseudo Huber loss is considered as loss function and the main focus is sign-consistency o...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2021
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!