Consistency-by-Construction Techniques for Software Models and Model Transformations
A model is consistent with given specifications (specs) if and only if all the specifications are held on the model, i.e., all the specs are true (correct) for the model. Constructing consistent models (e.g., programs or artifacts) is vital during software development, especially in Model-Driven...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2020
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A model is consistent with given specifications (specs) if and only if all the specifications are held on the model, i.e., all the specs are true (correct) for the model.
Constructing consistent models (e.g., programs or artifacts) is vital during software development, especially in Model-Driven Engineering (MDE), where models are employed throughout the life cycle of software development phases (analysis, design, implementation, and testing). Models are usually written using domain-specific modeling languages (DSMLs) and specified to describe a domain problem or a system from different perspectives and at several levels of abstraction. If a model conforms to the definition of its DSML (denoted usually by a meta-model and integrity constraints), the model is consistent.
Model transformations are an essential technology for manipulating models, including, e.g., refactoring and code generation in a (semi)automated way. They are often supposed to have a well-defined behavior in the sense that their resulting models are consistent with regard to a set of constraints. Inconsistent models may affect their applicability and thus the automation becomes untrustworthy and error-prone. The consistency of the models and model transformation results contribute to the quality of the overall modeled system.
Although MDE has significantly progressed and become an accepted best practice in many application domains such as automotive and aerospace, there are still several significant challenges that have to be tackled to realize the MDE vision in the industry. Challenges such as handling and resolving inconsistent models (e.g., incomplete models), enabling and enforcing model consistency/correctness during the construction, fostering the trust in and use of model transformations (e.g., by ensuring the resulting models are consistent), developing efficient (automated, standardized and reliable) domain-specific modeling tools, and dealing with large models are continually making the need for more research evident.
In this thesis, we contribute four automated interactive techniques for ensuring the consistency of models and model transformation results during the construction process. The first two contributions construct consistent models of a given DSML in an automated and interactive way. The construction can start at a seed model being potentially inconsistent.
Since enhancing a set of transformations to satisfy a set of constraints is a tedious and error-prone task and requires high skills related to the theoretical foundation,
we present the other contributions. They ensure model consistency by enhancing the behavior of model transformations through automatically constructing application conditions. The resulting application conditions control the applicability of the transformations to respect a set of constraints. Moreover, we provide several optimizing strategies.
Specifically, we present the following:
First, we present a model repair technique for repairing models in an automated and interactive way. Our approach guides the modeler to repair the whole model by resolving all the cardinalities violations and thereby yields a desired, consistent model. Second, we introduce a model generation technique to efficiently generate large, consistent, and diverse models. Both techniques are DSML-agnostic, i.e., they can deal with any meta-models. We present meta-techniques to instantiate both approaches to a given DSML; namely, we develop meta-tools to generate the corresponding DSML tools (model repair and generation) for a given meta-model automatically. We present the soundness of our techniques and evaluate and discuss their features such as scalability.
Third, we develop a tool based on a correct-by-construction technique for translating OCL constraints into semantically equivalent graph constraints and integrating them as guaranteeing application conditions into a transformation rule in a fully automated way. A constraint-guaranteeing application condition ensures that a rule applies successfully to a model if and only if the resulting model after the rule application satisfies the constraint. Fourth, we propose an optimizing-by-construction technique for application conditions for transformation rules that need to be constraint-preserving. A constraint-preserving application condition ensures that a rule applies successfully to a consistent model (w.r.t. the constraint) if and only if the resulting model after the rule application still satisfies the constraint. We show the soundness of our techniques, develop them as ready-to-use tools, evaluate the efficiency (complexity and performance) of both works, and assess the overall approach in general as well.
All our four techniques are compliant with the Eclipse Modeling Framework (EMF), which is the realization of the OMG standard specification in practice. Thus, the
interoperability and the interchangeability of the techniques are ensured. Our techniques not only improve the quality of the modeled system but also increase software productivity by providing meta-tools for generating the DSML tool supports and automating the tasks. |
---|---|
Physical Description: | 231 Pages |
DOI: | 10.17192/z2020.0091 |