On metric connections with totally skew-symmetric torsion tensor
We consider a 1-parameter family of metric connections with totally skew-symmetric torsion tensors on a Riemannian manifold and derive a Weitzenböck formula for the Laplace operator, arising from such a connection. Various notions related to the family are defined and developed in the process, mimic...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2019
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a 1-parameter family of metric connections with totally skew-symmetric torsion tensors on a Riemannian manifold and derive a Weitzenböck formula for the Laplace operator, arising from such a connection. Various notions related to the family are defined and developed in the process, mimicking what is normally done with the Levi-Civita connection. We investigate the matter of skew torsion further by introducing weakly non-degenerate and non-degenerate split torsion and show examples of manifolds, admitting such connections. |
---|---|
Physical Description: | 77 Pages |
DOI: | 10.17192/z2020.0088 |