The neurobiology of cortical music representations

Music is undeniable one of humanity’s defining traits, as it has been documented since the earliest days of mankind, is present in all knowcultures and perceivable by all humans nearly alike. Intrigued by its omnipresence, researchers of all disciplines started the investigation of music’s mystic...

Full description

Saved in:
Bibliographic Details
Main Author: Herholz, Peer
Contributors: Jansen, Andreas (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2020
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Music is undeniable one of humanity’s defining traits, as it has been documented since the earliest days of mankind, is present in all knowcultures and perceivable by all humans nearly alike. Intrigued by its omnipresence, researchers of all disciplines started the investigation of music’s mystical relationship and tremendous significance to humankind already several hundred years ago. Since comparably recently, the immense advancement of neuroscientific methods also enabled the examination of cognitive processes related to the processing of music. Within this neuroscience ofmusic, the vast majority of research work focused on how music, as an auditory stimulus, reaches the brain and howit is initially processed, aswell as on the tremendous effects it has on and can evoke through the human brain. However, intermediate steps, that is how the human brain achieves a transformation of incoming signals to a seemingly specialized and abstract representation of music have received less attention. Aiming to address this gap, the here presented thesis targeted these transformations, their possibly underlying processes and how both could potentially be explained through computational models. To this end, four projects were conducted. The first two comprised the creation and implementation of two open source toolboxes to first, tackle problems inherent to auditory neuroscience, thus also affecting neuroscientific music research and second, provide the basis for further advancements through standardization and automation. More precisely, this entailed deteriorated hearing thresholds and abilities in MRI settings and the aggravated localization and parcellation of the human auditory cortex as the core structure involved in auditory processing. The third project focused on the human’s brain apparent tuning to music by investigating functional and organizational principles of the auditory cortex and network with regard to the processing of different auditory categories of comparable social importance, more precisely if the perception of music evokes a is distinct and specialized pattern. In order to provide an in depth characterization of the respective patterns, both the segregation and integration of auditory cortex regions was examined. In the fourth and final project, a highly multimodal approach that included fMRI, EEG, behavior and models of varying complexity was utilized to evaluate how the aforementioned music representations are generated along the cortical hierarchy of auditory processing and how they are influenced by bottom-up and top-down processes. The results of project 1 and 2 demonstrated the necessity for the further advancement of MRI settings and definition of working models of the auditory cortex, as hearing thresholds and abilities seem to vary as a function of the used data acquisition protocol and the localization and parcellation of the human auditory cortex diverges drastically based on the approach it is based one. Project 3 revealed that the human brain apparently is indeed tuned for music by means of a specialized representation, as it evoked a bilateral network with a right hemispheric weight that was not observed for the other included categories. The result of this specialized and hierarchical recruitment of anterior and posterior auditory cortex regions was an abstract music component ix x SUMMARY that is situated in anterior regions of the superior temporal gyrus and preferably encodes music, regardless of sung or instrumental. The outcomes of project 4 indicated that even though the entire auditory cortex, again with a right hemispheric weight, is involved in the complex processing of music in particular, anterior regions yielded an abstract representation that varied excessively over time and could not sufficiently explained by any of the tested models. The specialized and abstract properties of this representation was furthermore underlined by the predictive ability of the tested models, as models that were either based on high level features such as behavioral representations and concepts or complex acoustic features always outperformed models based on single or simpler acoustic features. Additionally, factors know to influence auditory and thus music processing, like musical training apparently did not alter the observed representations. Together, the results of the projects suggest that the specialized and stable cortical representation of music is the outcome of sophisticated transformations of incoming sound signals along the cortical hierarchy of auditory processing that generate a music component in anterior regions of the superior temporal gyrus by means of top-down processes that interact with acoustic features, guiding their processing.
Physical Description:279 Pages
DOI:10.17192/z2020.0001