Low-dimensional Models for Subcritical Turbulence in Channel Flow - A Model Hierarchy Built on Production, Transfer and Dissipation of Turbulent Kinetic Energy
The onset of turbulence in channel flow can be observed way below the actual linear instability of the laminar profile \parencite{Carlson1982, Orszag1971}. In this subcritical regime, suitably chosen three-dimensional perturbations lead to transiently growing turbulence, showing a spatio-temporal...
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2018
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Das Einsetzen von Turbulenz in der ebenen Kanalströmung wird bereits weit unterhalb der tatsächlichen linearen Instabilität des laminaren Profils beobachtet \parencite{Carlson1982, Orszag1971}. In diesem subkritischen Bereich führen entsprechend gewählte dreidimensionale Störungen zu transient wachsender Turbulenz, die in genügend großen Simulationsdomänen einen raumzeitlich komplexen und intermittenten Charakter zeigt \parencite{Duguet2013,Lemoult2012}. Dieser Übergang zur Turbulenz ist charakterisiert durch die globale, plötzliche und gleichzeitige Aktivität von vielen Freiheitsgraden \parencite{Grossmann2000}. Er unterscheidet sich vom besser verstandenen lokalen Charakter der sich im Vergleich eher langsam entwickelnden linearen Instabilität bei einer be\-stimmten Wellenzahl, auf die eine Kaskade weiterer Instabilitäten zu immer kom\-ple\-xe\-rer Dynamik führt \parencite{Eckhardt2017,Manneville2005,ZammertPHD}. Während der lineare Mechanismus der nicht-normalen Verstärkung dabei einen wichtigen Grund\-pfeiler der sich selbst weiter anfachenden Turbulenz in Scherströmungen dar\-stellt \parencite{Trefethen1993}, ist die Nichtlinearität mindestens ein ebenso wichtiges Charakteristikum auf dem Weg zum Verständnis von subkritischer Turbulenz im Rahmen von mehr oder weniger einfachen Modellen \parencite {Waleffe1997}. Die jeweiligen Nicht\-li\-nea\-ri\-tä\-ten dieser Modelle formen nämlich den Zustandsraum \parencite{Eckhardt2006, Dauchot1997}, und ihre Wahl organisiert letztendlich die Dynamik, die wir beobachten. Dwight Barkley entwickelte vor einiger Zeit ein Modell für die Rohrströmung, bestehend aus zwei 1 + 1-dimensionalen, gekoppelten, dem FitzHugh-Nagumo-Modell angelehnten Reaktions-Advektions-Diffusions-Gleichungen \parencite{Barkley2011}. Die auf Anregbarkeit und Bistabilität aufgebaute Dynamik dieser Gleichungen, welche ursprünglich in der Modellierung der Axone des Nervensystems genutzt werden, ahmt das Zusammenspiel von transienter Turbulenz, Übergang zur Turbulenz und Relaminarisierung nach. Dabei werden erstaunlich viele Phänomene in eben jenem Übergangsbereich der Rohrströmung reproduziert, obwohl das Modell nicht direkt aus den ursprünglichen Impulsgleichungen hergeleitet ist. In Anbetracht der Qualtität dieses einfachen Modells entstand die Idee, ein ähnliches Modell, bestehend aus zwei gekoppelten gewöhnlichen Differentialgleichungen, direkter aus den Navier-Stokes-Gleichungen herzuleiten. Die analytisch hergeleiteten Gleichungen beschreiben die zeitliche Entwicklung der turbulenten kinetischen Energie in Strömungsrichtung und senkrecht dazu. Zentral dabei ist, dass sich beim volumetrischen Mittel im stationären Fall ein Gleichgewicht zwischen Pro\-duk\-tions\-ra\-te an turbulenter kinetischer Energie, der Energietransferrate zwischen den Komponenten und den jeweiligen Dissipationen einstellt. Im Folgenden wird Term für Term modelliert, um schließlich ein geschlossenes Modell mit zwei Unbekannten zu erhalten, die für die turbulenten Energien in Strömungsrichtung und senkrecht dazu stehen. Auf einer qualitativen Ebene werden wir unser Vorgehen auf dimensionsanalytische Argumente stützen sowie topologische Bedingungen in Betracht ziehen, damit ab einer kritischen Reynolds-Zahl zusätzlich zum laminaren Fixpunkt ein turbulenter Fixpunkt entstehen kann. Aber auch quantitativ wird das Modell schließlich einige Observablen aus der Turbulenztheorie mit ziemlicher Genauigkeit reproduzieren. Im Anschluss werden wir diesen Modellkern zum einen um stochastische Terme erweitern um das Verhalten transienter Turbulenz nachzuahmen, und zum anderen eine räumliche Erweiterung des Modells in Strömungsrichtung vornehmen, um die Ausbreitung subkritischer Turbulenz zu simulieren.