biodiversity Multiple facets of biodiversity: Assembly processes, trait composition, and functionality along tropical elevation gradients functional traits ecosystem processes 2018-01-08 Ökosyste https://archiv.ub.uni-marburg.de/diss/z2018/0046/cover.png Biologie Wallace, A. R. 1878. Tropical nature, and other essays. Macmillan and Co., London. Winfree, R., J. W. Fox, N. M. Williams, J. R. Reilly, and D. P. Cariveau. 2015. Abundance of common species, not species richness, drives delivery of a real- world ecosystem service. Ecology Letters 18:626-635. Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle, and T. M. Palmer. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1. Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7:1-15. Sømme, L. 1989. Adaptations of terrestrial arthropods to the alpine environment. Biological Reviews 64:367-407. Laliberté, E., and P. Legendre. 2010. A distance- based framework for measuring functional diversity from multiple traits. Ecology 91:299-305. Kress, W. J., D. L. Erickson, N. G. Swenson, J. Thompson, M. Uriarte, and J. K. Zimmerman. 2010. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PloS one 5:e15409. Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, and M. I. O'Connor. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, and A. Antonelli. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927-931. LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20:97- 117. Peters, T., A. Braeuning, J. Muenchow, and M. Richter. 2014b. An ecological paradox: high species diversity and low position of the upper forest line in the Andean Depression. Ecology and Evolution 4:2134-2145. Johnson, M. T. J., and J. R. Stinchcombe. 2007. An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology and Evolutioncology + Evolution 22:250-7. Gastauer, M., J. A. A. Meira-Neto, M. Gastauer, and J. A. A. Meira-Neto. 2016. An enhanced calibration of a recently released megatree for the analysis of phylogenetic diversity. Brazilian Journal of Biology 76:619-628. Raven, P. H., and D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61:539-673. Castro, F. S. de, A. B. Gontijo, P. D. T. A. Castro, and S. P. Ribeiro. 2012. Annual and seasonal changes in the structure of litter- dwelling ant assemblages (Hymenoptera: Formicidae) in Atlantic semideciduous forests. Psyche 2012:1-12. Bishop, T. R., M. P. Robertson, H. Gibb, B. J. van Rensburg, B. Braschler, S. L. Chown, S. H. Foord, T. C. Munyai, I. Okey, P. G. Tshivhandekano, V. Werenkraut, and C. L. Parr. 2016. Ant assemblages have darker and larger members in cold environments. Global Ecology and Biogeography 25:1489-1499. Folgarait, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity + Conservation 7:1221-1244. Nowrouzi, S., A. N. Andersen, S. Macfadyen, K. M. Staunton, J. VanDerWal, and S. K. A. Robson. 2016. Ant diversity and distribution along elevation gradients in the Australian wet tropics: the importance of seasonal moisture stability. PLOS ONE 11:e0153420. Philpott, S. M., I. Perfecto, I. Armbrecht, and C. L. Parr. 2010. Ant diversity and function in disturbed and changing habitats. Pages 137-156in L. Lach, C. L. Parr, and K. L. References Abbott, editors.Ant ecology. Oxford University Press. Fotso Kuate, A., R. Hanna, M. Tindo, S. Nanga, and P. Nagel. 2015. Ant diversity in dominant vegetation types of Southern Cameroon. Biotropica 47:94-100. Steiner, A. L. 1981. Anti-predator strategies. II. Grasshoppers (Orthoptera, Acrididae) attacked by Prionyx parkeri and some Tachysphex wasps (Hymenoptera, Sphecinae and Larrinae): a descriptive study. Psyche 88:1-24. Salas-Lopez, A., H. Mickal, F. Menzel, and J. Orivel. 2017. Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment. Oecologia 183:249-261. Botes, A., M. A. McGeoch, H. G. Robertson, A. Niekerk, H. P. Davids, and S. L. Chown. 2006. Ants, altitude and change in the northern cape floristic region. Journal of Biogeography 33:71-90. Peters, V. E., K. U. Campbell, G. Dienno, M. García, E. Leak, C. Loyke, M. Ogle, B. Steinly, and T. O. Crist. 2016. Ants and plants as indicators of biodiversity, ecosystem services, and conservation value in constructed grasslands. Biodiversity and Conservation 25:1481- 1501. Andersen, A. N., and J. D. Majer. 2004. Ants show the way Down Under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment 2:291-298. The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181:1-20. Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290. Galtier, J., and N. P. Rowe. 1989. A primitive seed-like structure and its implications for early gymnosperm evolution. Nature 340:225-227. Seppelt, R., C. F. Dormann, F. V. Eppink, S. Lautenbach, and S. Schmidt. 2011. A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied Ecology 48:630-636. Floren, A., A. Biun, and E. Linsenmair. 2002. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131:137-144. Lawton, J. H. 1999. Are there general laws in ecology? Oikos 84:177-192. Wiescher, P. T., J. M. C. Pearce-Duvet, and D. H. Feener. 2012. Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063-1074. Keddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157-164. Weiher, E., and P. A. Keddy. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159. Nock, C. A., R. J. Vogt, and B. E. Beisner. 2016. Functional traits. Pages 1-8eLS. John Wiley + Sons, Chichester. Noss, R. F. 1999. Assessing and monitoring forest biodiversity: a suggested framework and indicators. Forest Ecology and Management 115:135-146. Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne, and N. LeRoy Poff. 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13:267-283. Bergmann, C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud. 1:595-708. Blanckenhorn, W. U., and M. Demont. 2004. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative and Comparative Biology 44:413-424. Watt, C., S. Mitchell, and V. Salewski. 2010. Bergmann's rule; a concept cluster? Oikos 119:89-100. Chazdon, R. L., C. A. Harvey, O. Komar, D. M. Griffith, B. G. Ferguson, M. Martínez- Ramos, H. Morales, R. Nigh, L. Soto-Pinto, M. Van Breugel, and S. M. Philpott. 2009. Beyond reserves: a research agenda for conserving biodiversity in human- modified tropical landscapes. Biotropica 41:142-153. Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:1079-1087. Lavergne, S., N. Mouquet, W. Thuiller, and O. Ronce. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics 41:321-350. Hector, A., and R. Bagchi. 2007. Biodiversity and ecosystem multifunctionality. Nature 448:188-190. Tilman, D., P. B. Reich, and J. M. H. Knops. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629-632. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-8. Tilman, D., P. B. Reich, and F. Isbell. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of the United States of America 109:10394-7. Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava, and S. Naeem. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67. Segovia, R. A., L. F. Hinojosa, M. F. Pérez, and B. a. Hawkins. 2013. Biogeographic anomalies in the species richness of Chilean forests: incorporating evolution into a climatic -historic scenario. Austral Ecology 38:905-914. Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology + Evolution 15:56-61. Chapin III, F. S., B. H. Walker, R. J. Hobbs, D. U. Hooper, J. H. Lawton, O. E. Sala, and D. Tilman. 1997. Biotic control over the functioning of ecosystems. Science 277:500-504. Akin, S., and K. O. Winemiller. 2008. Body size and trophic position in a temperate estuarine food web. Acta Oecologica 33:144-153. Picaud, F., and D. P. Petit. 2008. Body size, sexual dimorphism and ecological succession in grasshoppers. Journal of Orthoptera Research 17:177-181. Chown, S. L., and K. J. Gaston. 2010. Body size variation in insects: a macroecological perspective. Biological reviews of the Cambridge Philosophical Society 85:139- 69. Gollan, J. R., L. L. De Bruyn, N. Reid, D. Smith, and L. Wilkie. 2011. Can ants be used as ecological indicators of restoration progress in dynamic environments? A case study in a revegetated riparian zone. Ecological Indicators 11:1517-1525. Jorgensen, P. M., and S. León-Yánez, editors. 1999. Catalogue of the vascular plants of Ecuador. Monogr. Sy. Monogr. Syst. Bot. Missouri Bot. Gard. 75: i-viii, 1-1182. Dale, V. H., and S. C. Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators 1:3-10. Intergovernmental Panel on Climate Change. 2007. Climate change 2007 -the physical science basis -contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Houghton, J., G. Jenkins, and J. Ephraums. 1990. Climate change: the IPCC scientific assessment. Cambridge University Press. Lenoir, J., and J.-C. Svenning. 2015. Climate- related range shifts -a global multidimensional synthesis and new research directions. Ecography 38:15-28. Bendix, J., R. Rollenbeck, P. Fabian, P. Emck, M. Richter, and E. Beck. 2008a. Climate Variability. Pages 281-290in E. Beck, J. Bendix, I. Kottke, F. Makeschin, and R. Ohlberger, J. 2013. Climate warming and ectotherm body size -from individual physiology to community ecology. Functional Ecology 27:991-1001. Bendix, J., R. Rollenbeck, D. Göttlicher, and J. Cermak. 2006. Cloud occurrence and cloud properties in Ecuador. Climate Research 30:133-147. Domínguez, D. F., M. Bustamante, R. Albuja, A. Castro, J. E. Lattke, and D. A. Donoso. 2016. COI barcodes for ants (Hymenoptera: Formicidae) of drylands in the south of Ecuador. Ecosistemas 25:76- 78. Schoereder, J. H., T. G. Sobrinho, C. R. Ribas, and R. B. F. Campos. 2004. Colonization and extinction of ant communities in a fragmented landscape. Austral Ecology 29:391-398. Asner, G. P., S. R. Loarie, and U. Heyder. 2010. Combined effects of climate and land-use change on the future of humid tropical forests. Conservation Letters 3:395-403. Storch, D. 2003. Comment on "Global biodiversity, biochemical kinetics, and the energetic-equivalence rule." Science 299:346. Sundqvist, M. K., N. J. Sanders, and D. a. Wardle. 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44:261-280. Walther, G. R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2019- 2024. Chazdon, R. L., S. Careaga, C. Webb, and O. Vargas. 2003. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs 73:331- 348. Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592-599. Hawkins, B. A., M. Rueda, T. F. Rangel, R. Field, and J. A. F. Diniz-Filho. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography 41:23-38. Yanoviak, S. P., and M. Kaspari. 2000. Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259-266. Donoso, D. A., and G. Ramón. 2009. Composition of a high diversity leaf litter ant community (Hymenoptera: Formicidae) from an Ecuadorian pre- montane rainforest. Annales de la Société entomologique de France (N.S.) 45:487- 499. Shipley, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363-368. Wolverton, S., M. A. Huston, J. H. Kennedy, K. References Cagle, and J. D. Cornelius. 2009. Conformation to Bergmann's Rule in White-tailed Deer can be explained by food availability. The American Midland Naturalist 162:403-417. Chapin III, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack, and S. Díaz. 2000. Consequences of changing biodiversity. Nature 405:234-242. Hannah, L., G. F. Midgley, T. Lovejoy, W. J. Bond, M. Bush, J. C. Lovett, D. Scott, and F. I. Woodward. 2002. Conservation of Biodiversity in a changing climate. Conservation Biology 16:264-268. Culmsee, H., and C. Leuschner. 2013. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. Journal of Biogeography 40:1997-2010. Hemp, A. 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184:27-42. Pennington, R. T., M. Lavin, T. Särkinen, G. P. Lewis, B. B. Klitgaard, and C. E. Hughes. 2010. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America 107:13783-13787. Qian, H. 2014. Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. Journal of Vegetation Science 25:1208-1215. McCain, C. M. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography 16:1-13. Eterovick, P. C., J. E. C. Figueira, and J. Vasconcellos-Neto. 1997. Cryptic coloration and choice of escape microhabitats by grasshoppers (Orthoptera: Acrididae). Biological Journal of the Linnean Society 61:485-499. Davies, T. J., T. G. Barraclough, M. W. Chase, P. S. Soltis, D. E. Soltis, and V. Savolainen. 2004. Darwin's abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences 101:1904-1909. Seifert, C. L., C. H. Schulze, T. C. T. Dreschke, H. Frötscher, and K. Fiedler. 2016. Day vs. night predation on artificial caterpillars in primary rainforest habitats -an experimental approach. Entomologia Experimentalis et Applicata 158:54-59. Denno, R. F., G. K. Roderick, K. L. Olmstead, and H. G. Döbel. 1991. Density-related migration in planthoppers (Homoptera: Delphacidae): the role of habitat persistence. The American Naturalist 138:1513-1541. Low, P. A., K. Sam, C. McArthur, M. R. C. Posa, and D. F. Hochuli. 2014. Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomologia Experimentalis et Applicata 152:120-126. Hill, M. O., and H. G. Gauch. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47-58. Jayatilaka, P., A. Narendra, S. F. Reid, P. Cooper, and J. Zeil. 2011. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. The Journal of experimental biology 214:2730-2738. Branson, D. H. 2005. Direct and indirect effects of avian predation on grasshopper communities in northern mixed-grass prairie. Environmental Entomology 34:1114-1121. Kembel, S. W. 2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters 12:949-960. Klimes, P., P. Fibich, C. Idigel, and M. Rimandai. 2015. Disentangling the diversity of arboreal ant communities in tropical forest trees. PLOS ONE 10:e0117853. Morley, R. J. 2011. Dispersal and paleoecology of tropical podocarps. Smithsonian Contributions to Botany 95:21-41. Acharya, B. K., B. Chettri, and L. Vijayan. 2011. Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica 37:329-336. Brehm, G. 2002. Diversity of geometrid moths in a montane rainforest in Ecuador. Universität Bayreuth. Ryder Wilkie, K. T., A. L. Mertl, and J. F. A. Traniello. 2009. Diversity of ground- dwelling ants (Hymenoptera : Formicidae) in primary and secondary forests in Amazonian Ecuador. Myrmecol. News 12:139-147. Andersen, A. N. 1986. Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in Southeastern Australia. Australian Journal of Zoology 34:53-64. Clarke, D. A., P. H. York, M. A. Rasheed, and T. D. Northfield. 2017. Does biodiversity- ecosystem function literature neglect tropical ecosystems? Trends in Ecology + Evolution 32:320-323. Gibb, H., J. Stoklosa, D. I. Warton, A. M. Brown, N. R. Andrew, and S. A. Cunningham. 2015b. Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 177:519-531. Cahill, J. F., S. W. Kembel, E. G. Lamb, and P. A. Keddy. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution References and Systematics 10:41-50. Gibb, H., and C. L. Parr. 2013. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLOS ONE 8:e64005. O'Hara, R. B., and D. J. Kotze. 2010. Do not log- transform count data. Methods in Ecology and Evolution 1:118-122. Huang, S., K. Roy, and D. Jablonski. 2014. Do past climate states influence diversity dynamics and the present-day latitudinal diversity gradient? Global Ecology and Biogeography 23:530-540. Bihn, J. H., M. Verhaagh, M. Brändle, and R. Brandl. 2008. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological Conservation 141:733-743. Howe, A., G. L. Lövei, and G. Nachman. 2009. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomologia Experimentalis et Applicata 131:325-329. Fowler, H. G., L. C. Forti, C. R. F. Brandao, J. H. C. Delabie, H. L. Vasconcelos, A. R. Panizzi, and J. R. P. Parra. 1991. Ecologia nutricional de formigas. Pages 131-223in A. R. Oanizzi and J. R. P. Parra, editors.Ecologia nutricional de insetos. Olden, J. D., N. LeRoy Poff, M. R. Douglas, M. E. Douglas, and K. D. Fausch. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology + Evolution 19:18-24. Mittelbach, G. G., and D. W. Schemske. 2015. Ecological and evolutionary perspectives on community assembly. Trends in Ecology + Evolution 30:241-247. Weiser, M. D., and M. Kaspari. 2006. Ecological morphospace of New World ants. Ecological Entomology 31:131-142. Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38:817- 827. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395. Schulze, A.-S. D. Siamantziouras, A. C. Terry, A. Y. Troumbis, F. I. Woodward, S. Yachi, and J. H. Lawton. 2005. Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs 75:37-63. Millien, V., S. Kathleen Lyons, L. Olson, F. A. Smith, A. B. Wilson, and Y. Yom-Tov. 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters 9:853-869. Delsinne, T., T. Arias-Penna, and M. Leponce. 2013. Effect of rainfall exclusion on ant assemblages in montane rainforests of Ecuador. Basic and Applied Ecology 14:357-365. Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer, and D. A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3-35. Leal, I. R., B. K. C. Filgueiras, J. P. Gomes, L. Iannuzzi, and A. N. Andersen. 2012. Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation 21:1687-1701. Bucher, R., H. Binz, F. Menzel, and M. H. Entling. 2014. Effects of spider chemotactile cues on arthropod behavior. Journal of Insect Behavior 27:567-580. Vogt, J. T., W. a. Smith, R. A. Grantham, and R. E. Wright. 2003. Effects of temperature and season on foraging activity of red imported fire ants (Hymenoptera: Formicidae) in Oklahoma. Environmental Entomology 32:447-451. Machac, A., M. Janda, R. R. Dunn, and N. J. Sanders. 2011. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34:364-371. Bishop, T. R., M. P. Robertson, B. J. van Rensburg, and C. L. Parr. 2014. Elevation- diversity patterns through space and time: ant communities of the Maloti- Drakensberg Mountains of southern Africa. Journal of Biogeography 41:2256- 2268. Lomolino, M. V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography 10:3-13. Chen, I.-C., H.-J. Shiu, S. Benedick, J. D. Holloway, V. K. Chey, H. S. Barlow, J. K. Hill, and C. D. Thomas. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences of the United States of America 106:1479-83. Bartholomew, G. A., J. R. B. Lighton, and D. H. J. Feener. 1988. Energetics of trail running, load carriage, and emigration in the column-raiding army ant Eciton hamatum. Physiological Zoology 61:57-68. De Ruiter, P. C., A. M. Neutel, and J. C. Moore. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257-1260. Clapham, M. E., and J. A. Karr. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences of the United States of America 109:10927-30. Zeuss, D., S. Brunzel, and R. Brandl. 2017. Environmental drivers of voltinism and body size in insect assemblages across Europe. Global Ecology and Biogeography 26:154-165. Qian, H., J. J. Wiens, J. Zhang, and Y. Zhang. 2015. Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. Ecography 38:241-250. Wiens, J. J., C. H. Graham, D. S. Moen, S. A. Smith, and T. W. Reeder. 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American Naturalist 168:579-596. Algar, A. C., J. T. Kerr, and D. J. Currie. 2009. Evolutionary constraints on regional faunas: whom, but not how many. Ecology Letters 12:57-65. Cadotte, M. W., B. J. Cardinale, and T. H. Oakley. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America 105:17012-7. Cadotte, M. W. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences of the United States of America 110:8996-9000. Stephens, P. R., and J. J. Wiens. 2003. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. The American naturalist 161:112-128. Chown, S. L., and K. J. Gaston. 1999. Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews 74:87-120. Mishra, M., and V. B. Meyer-Rochow. 2008. Eyes of male and female Orgyia antiqua (Lepidoptera; Lymantriidae) react differently to an exposure with UV-A. Micron 39:471-480. Dossa, G. G. O., E. Paudel, J. Fujinuma, H. Yu, W. Chutipong, Y. Zhang, S. Paz, and R. D. Harrison. 2013. Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE 8:e67720. Laliberté, E., P. Legendre, and Bill Shipley. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0- 12. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57-60. Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software References 67:1-48. Homeier, J., F. A. Werner, S. R. Gradstein, S. W. Breckle, and M. Richter. 2008. Flora and fungi: composition and function. Pages 87-100in E. Beck, J. Bendix, I. Kottke, F. Makeschin, and R. Mosandl, editors.Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer, Berlin, Heidelberg. Davidson, D. W. 1977. Foraging ecology and community organization in desert seed- eating ants. Ecology 58:725-737. Carvalho, K. S., and H. L. Vasconcelos. 1999. Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biological Conservation 91:151-157. Kerr, J. T., and M. Ostrovsky. 2003. From space to species: ecological applications for remote sensing. Trends in Ecology + Evolution 18:299-305. Flynn, D. F. B., N. Mirotchnick, M. Jain, M. I. Palmer, and S. Naeem. 2011. Functional and phylogenetic diversity as predictors of biodiversity--ecosystem-function relationships. Ecology 92:1573-1581. Petchey, O. L., and K. J. Gaston. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741-758. Reymond, A., J. Purcell, D. Cherix, A. Guisan, and L. Pellissier. 2013. Functional diversity decreases with temperature in high elevation ant fauna. Ecological Entomology 38:364-373. Petchey, O. L., and K. J. Gaston. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5:402-411. Poos, M. S., S. C. Walker, and D. A. Jackson. 2009. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90:341-347. Mouchet, M. A., S. Villéger, N. W. H. Mason, and D. Mouillot. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867-876. Griffin, J. N., V. Méndez, A. F. Johnson, S. R. Jenkins, and A. Foggo. 2009. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118:37-44. Andersen, A. N. 1997. Functional groups and patterns of organization in North American ant communities: a comparison with Australia. Journal of Biogeography 24:433-460. Lebrija-Trejos, E., E. A. Pérez-García, J. A. Meave, F. Bongers, and L. Poorter. 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386-398. De Bodt, S., S. Maere, and Y. Van de Peer. 2005. Genome duplication and the origin of angiosperms. Trends in Ecology + Evolution 20:591-7. Hawkins, B. A., M. Á. Rodríguez, and S. G. Weller. 2011. Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography 38:1253-1266. Lattke, J.-P. Lessard, T. P. McGlynn, S. B. Menke, C. L. Parr, S. M. Philpott, H. L. Vasconcelos, M. D. Weiser, and R. R. Dunn. 2011. Global diversity in light of climate change: the case of ants. Diversity and Distributions 17:652-662. Tang, C. Q., C. D. L. Orme, L. Bunnefeld, F. A. Jones, S. Powell, M. W. Chase, T. G. Barraclough, and V. Savolainen. 2016. Global monocot diversification: geography explains variation in species richness better than environment or biology. Botanical Journal of the Linnean Society 506:89-92. Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405:220-227. Colwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman, and J. T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258-261. Mosandl, editors.Ecological studies, vol 198: Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin Heidelberg. Bendix, J., R. Rollenbeck, M. Richter, P. Fabian, and P. Emck. 2008b. Climate. Pages 63- 73in E. Beck, J. Bendix, I. Kottke, F. Makeschin, and R. Mosandl, editors.Ecological studies, vol 198: Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin Heidelberg. Harrison, S., and E. Bruna. 1999. Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22:225-232. Sam, K., B. Koane, and V. Novotny. 2015a. Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography 38:293- 300. Röder, J., F. Detsch, I. Otte, T. Appelhans, T. Nauss, M. K. Peters, and R. Brandl. 2017. Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient. Biotropica 49:217-228. Perkins, D. M., R. A. Bailey, M. Dossena, L. Gamfeldt, J. Reiss, M. Trimmer, and G. Woodward. 2015. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology 21:396-406. Lewis, S. Milne, I. Mwesige, A. Nakamura, C. S. Nell, E. Nichols, A. Prokurat, K. Sam, N. M. Schmidt, A. Slade, V. Slade, A. Suchanková, T. Teder, S. van Nouhuys, V. Vandvik, A. Weissflog, V. Zhukovich, and E. M. Slade. 2017. Higher predation risk for insect prey at low latitudes and elevations. Science 356:742-744. Wiens, J. J., and M. J. Donoghue. 2004. Historical biogeography, ecology and species richness. Trends in Ecology + Evolution 19:639-44. Longino, J. T., M. G. Branstetter, and R. K. Colwell. 2014. How ants drop out: ant abundance on tropical mountains. PLoS ONE 9:e104030. Halbritter, A. H., J. M. Alexander, P. J. Edwards, and R. Billeter. 2013. How comparable are species distributions along elevational and latitudinal climate gradients? Global Ecology and Biogeography 22:1228-1237. Petchey, O. L., A. Hector, and K. J. Gaston. 2004. How do different measures of functional diversity perform? Ecology 85:847-857. Siddig, A. A. H., A. M. Ellison, A. Ochs, C. Villar-Leeman, and M. K. Lau. 2016. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators 60:223-230. Lyashevska, O., and K. D. Farnsworth. 2012. How many dimensions of biodiversity do we need? Ecological Indicators 18:485-492. Davies, T. J., N. J. B. Kraft, N. Salamin, and E. M. Wolkovich. 2012. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology 93:242-247. Díaz, S., S. Lavorel, F. de Bello, F. Quétier, K. Grigulis, and T. M. Robson. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104:20684-9. PloS one 9:e98361. Spasojevic, M. J., and K. N. Suding. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100:652-661. Maherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316. Ricklefs, R. E., and R. E. Latham. 1992. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs. The American Naturalist 139:1305-1321. Morley, R. J. 2003. Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6:5-20. Dillon, M. E., M. R. Frazier, and R. Dudley. 2006. Into thin air: physiology and evolution of alpine insects. Integrative and comparative biology 46:49-61. Fielding, D. J. 2004. Intraspecific competition and spatial heterogeneity alter life history traits in an individual-based model of grasshoppers. Ecological Modelling 175:169-187. Werner, F. A., and J. Homeier. 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology 29:430-440. Low, P. A., C. McArthur, and D. F. Hochuli. 2016. It is safe to go out on a limb: within- tree leaf age and location do not alter predation risk for insect herbivores. Austral Entomology 55:284-290. Bennet-Clark, H. C. 1990. Jumping in Orthoptera. Pages 173-203in R. F. Chapman and A. Joern, editors.Biology of grasshoppers. John Wiley + Sons. Curatola Fernández, G., W. Obermeier, A. Gerique, M. Sandoval, L. Lehnert, B. Thies, and J. Bendix. 2015. Land cover change in the Andes of southern Ecuador-patterns and drivers. Remote Sensing 7:2509-2542. Hunter, M. D. 2002. Landscape structure, habitat fragmentation, and the ecology of insects. Agricultural and Forest Entomology 4:159-166. Gaston, K. J. 2007. Latitudinal gradient in species richness. Current Biology 17:R574. Qian, H., Y. Zhang, J. Zhang, and X. Wang. 2013. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Global Ecology and Biogeography 22:1183-1191. Prinzing, A., R. Reiffers, W. G. Braakhekke, S. M. Hennekens, O. Tackenberg, W. A. Ozinga, J. H. J. Schaminée, and J. M. van Groenendael. 2008. Less lineages -more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecology letters 11:809-19. Ricotta, C., M. Carboni, and A. T. R. Acosta. 2015. Let the concept of indicator species be functional! Journal of Vegetation Science 26:839-847. Parsons, S. M. A., and A. Joern. 2014. Life history traits associated with body size covary along a latitudinal gradient in a generalist grasshopper. Oecologia 174:379-91. Romdal, T. S., M. B. Araújo, and C. Rahbek. 2013. Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography 22:344-350. Gossner, M. M., C. R. Fonseca, E. Pašalić, M. Türke, M. Lange, and W. W. Weisser. 2014. Limitations to the use of arthropods as temperate forests indicators. Biodiversity and Conservation 23:945-962. Pinto, R., V. N. de Jonge, and J. C. Marques. 2014. Linking biodiversity indicators, ecosystem functioning, provision of services and human well-being in estuarine systems: application of a conceptual framework. Ecological Indicators 36:644-655. J. van Mantgem. 2000. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122:297- 305. Buckley, L. B., and W. Jetz. 2008. Linking global turnover of species and environments. Proceedings of the National Academy of Sciences of the United States of America 105:17836-41. Blackburn, T. M., and K. J. Gaston. 2001, July 7. Linking patterns in macroecology. Blackwell Science Ltd. Laiolo, P., J. C. Illera, and J. R. Obeso. 2013. Local climate determines intra-and interspecific variation in sexual size dimorphism in mountain grasshopper communities. Journal of Evolutionary Biology 26:2171-83. Bihn, J. H., G. Gebauer, and R. Brandl. 2010. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782-792. Edwards, D. P., J. A. Tobias, D. Sheil, E. Meijaard, and W. F. Laurance. 2014. Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology + Evolution 29:511-520. Salazar, F., F. Reyes-Bueno, D. Sanmartin, and D. A. Donoso. 2015. Mapping continental Ecuadorian ant species. Sociobiology 62:132-162. Green, A. J. 2001. Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82:1473-1483. Sam, K., T. Remmel, and F. Molleman. 2015b. Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: an experiment using clay and dough dummies with green colourants on various plant species. Entomologia Experimentalis et Applicata 157:317-324. Bässler, C., H. Halbwachs, P. Karasch, H. Holzer, A. Gminder, L. Krieglsteiner, R. S. Gonzalez, J. Müller, and R. Brandl. 2016. Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecology and Evolution 6:582- 592. Pavoine, S., and M. B. Bonsall. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86:792-812. Dudley, R. 2002. Mechanisms and implications of animal flight maneuverability. References Integrative and Comparative Biology 42:135-140. Bryant, J. A., C. Lamanna, H. Morlon, A. J. Kerkhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105:11505-11511. Noben, K. Sam, L. Sam, A. M. Shapiro, X. Wang, and V. Novotny. 2016. Midpoint attractors and species richness: modelling the interaction between environmental drivers and geometric constraints. Ecology Letters 19:1009-1022. Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5:3-21. Yates, M. L., N. R. Andrew, M. Binns, and H. Gibb. 2014. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2:e271. Dehling, D. M., P. Jordano, H. M. Schaefer, K. Böhning-Gaese, and M. Schleuning. 2016. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions. Proceedings of the Royal Society of London B: Biological Sciences 283. Garcia, R. A., M. Cabeza, C. Rahbek, and M. B. Araujo. 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579. Villéger, S., N. W. H. Mason, and D. Mouillot. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290-2301. Giehl, E. L. H., and J. A. Jarenkow. 2012. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America. Ecography 35:933-943. Anacker, L. B. Buckley, H. V Cornell, E. I. Damschen, T. J. Davies, J.-A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D. Holt, C. M. Mccain, and P. R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13:1310-24. Kozak, K. H., and J. J. Wiens. 2010. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. The American Naturalist 176:40-54. Wiens, J. J., and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519-539. Wolf, K., E. Veldkamp, J. Homeier, and G. O. Martinson. 2011. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles 25:GB4009. Mlambo, M. C. 2014. Not all traits are "functional": insights from taxonomy and biodiversity-ecosystem functioning research. Biodiversity and Conservation 23:781-790. Isbell, F., P. B. Reich, D. Tilman, S. E. Hobbie, S. Polasky, and S. Binder. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America 110:11911-6. Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. The American Naturalist 163:192-211. Beck, C. B. 1966. On the origin of gymnosperms. Taxon 15:337-339. Darwin, C. 1859. On the origin of species by means of natural selection. John Murray, London. Belovsky, G. E. 1997. Optimal foraging and community structure: the allometry of herbivore food selection and competition. Evolutionary Ecology 11:641-672. Fartmann, T., B. Krämer, F. Stelzner, and D. Poniatowski. 2012. Orthoptera as ecological indicators for succession in steppe grassland. Ecological Indicators 20:337-344. Qian, H., and R. E. Ricklefs. 2016. Out of the tropical lowlands: latitude versus elevation. Trends in Ecology + Evolution 31:738-741. Willig, M. R., D. M. Kaufman, and R. D. Stevens. 2003. Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34:273-309. Bidau, C. J. 2014. Patterns in Orthoptera biodiversity. I. Adaptations in ecological and evolutionary contexts. Journal of Insect Biodiversity 2:1-39. Sanders, N. J., J. Moss, and D. Wagner. 2003. Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography 12:93- 102. Oindo, B. O. 2002. Patterns of herbivore species richness in Kenya and current ecoclimatic stability. Biodiversity and Conservation 11:1205-1221. Pausas, J. G., and M. P. Austin. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12:153-166. Molleman, F., T. Remmel, and K. Sam. 2016. Phenology of predation on insects in a tropical forest: temporal variation in attack rate on dummy caterpillars. Biotropica 48:229-236. Webb, C. O., D. D. Ackerly, and S. W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098- 100. Emerson, B. C., and R. G. Gillespie. 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology + Evolution 23:619-630. Graham, C. H., and P. V. A. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters 11:1265-1277. Srivastava, D. S., M. W. Cadotte, A. A. M. Macdonald, R. G. Marushia, and N. Mirotchnick. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecology Letters 15:637-648. Tallents, L. A., J. C. Lovett, J. B. Hall, and A. C. Hamilton. 2005. Phylogenetic diversity of forest trees in the Usambara mountains of Tanzania: correlations with altitude. Botanical Journal of the Linnean Society 149:217-228. Luebert, F., and M. Weigend. 2014. Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution 2:1-17. Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:995- 1003. Lamsdell, J. C., C. R. Congreve, M. J. Hopkins, A. Z. Krug, and M. E. Patzkowsky. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology + Evolution 32:452-463. Gerhold, P., J. F. Cahill, M. Winter, I. V. Bartish, and A. Prinzing. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29:600-614. Cadotte, M. W., M. a. Hamilton, and B. R. Murray. 2009b. Phylogenetic relatedness and plant invader success across two spatial scales. Diversity and Distributions 15:481-488. Qian, H., Z. Hao, and J. Zhang. 2014. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology 7:154-165. Hardy, O. J., P. Couteron, F. Munoz, B. R. Ramesh, and R. Pélissier. 2012. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology and Biogeography 21:1007-1016. Rangel, T. F., R. K. Colwell, G. R. Graves, K. Fučíková, C. Rahbek, and J. A. F. Diniz- Filho. 2015. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69:1301-1312. Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475-505. Lu, Y., J.-H. Ran, D.-M. Guo, Z.-Y. Yang, and X.- Q. Wang. 2014. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE 9:e107679. Zera, A. J., and R. F. Denno. 1997. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology 42:207-230. Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217-223. Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463-1464. Kress, W. J., D. L. Erickson, F. A. Jones, N. G. Swenson, R. Perez, O. Sanjur, and E. Bermingham. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences of the United States of America 106:18621-18626. Swenson, N. G., and M. D. Weiser. 2010. Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology 91:2234-2241. Holt, R. D. 1977. Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology 12:197-229. Denno, R. F., C. Gratton, H. Döbel, and D. L. Finke. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84:1032-1044. Snyder, W. E., G. B. Snyder, D. L. Finke, and C. S. Straub. 2006. Predator biodiversity strengthens herbivore suppression. Ecology letters 9:789-96. Del Toro, I., R. R. Silva, and A. M. Ellison. 2015. Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Diversity and Distributions 21:781-791. Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisting the Holy Grail. Functional Ecology 16:545-556. Schleuning, M., J. Fründ, and D. García. 2015. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant- animal interactions. Ecography 38:380- 392. Forest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, Ş. Procheş, M. van der Bank, G. Reeves, T. A. J. Hedderson, and V. Savolainen. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757-760. Picaud, F., and D. P. Petit. 2007. Primary succession of Acrididae (Orthoptera): differences in displacement capacities in early and late colonizers of new habitats. Acta Oecologica 32:59-66. Tu, Y.-K., M. Kellett, V. Clerehugh, and M. S. Gilthorpe. 2005. Problems of correlations between explanatory variables in multiple regression analyses in the dental literature. British Dental Journal 199:457- 461. Hawkins, B. A., E. E. Porter, and J. A. Felizola Diniz-Filho. 2003. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608-1623. Rollenbeck, R., and J. Bendix. 2011. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmospheric Research 99:277-289. R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for statistical computing. La Sorte, F. A., S. H. M. Butchart, W. Jetz, and K. Böhning-Gaese. 2014. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change. Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. Mouillot, D., D. R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, S. Lavergne, S. Lavorel, N. Mouquet, C. E. T. Paine, J. Renaud, and W. Thuiller. 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology 11:e1001569. McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology + Evolution 21:178-185. Allen, A., J. Gillooly, and J. Brown. 2007. Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity. Scaling biodiversity:1-29. Wagemann, J., B. Thies, R. Rollenbeck, T. Peters, and J. Bendix. 2015. Regionalization of wind-speed data to analyse tree-line wind conditions in the eastern Andes of southern Ecuador. Erdkunde 69:3-19. Huston, M. A., and S. Wolverton. 2011. Regulation of animal size by eNPP, Bergmann's rule, and related phenomena. Ecological Monographs 81:349-405. Arnan, X., X. Cerdá, and J. Retana. 2017. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40:448-457. Schellenberger Costa, D., A. Classen, S. Ferger, M. Helbig-Bonitz, M. Peters, K. Böhning- Gaese, I. Steffan-Dewenter, and M. Kleyer. 2017. Relationships between abiotic References environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania. PloS one 12:e0174157. Song, Y., P. Wang, G. Li, and D. Zhou. 2014. Relationships between functional diversity and ecosystem functioning: a review. Acta Ecologica Sinica 34:85-91. Wallis, C. I. B., G. Brehm, D. A. Donoso, K. Fiedler, J. Homeier, D. Paulsch, D. Süßenbach, Y. Tiede, R. Brandl, N. Farwig, and J. Bendix. 2017. Remote sensing improves prediction of tropical montane species diversity but performance differs among taxa. Ecological Indicators. Jantz, N., J. Homeier, and H. Behling. 2014. Representativeness of tree diversity in the modern pollen rain of Andean montane forests. Journal of Vegetation Science 25:481-490. Davidson, D. W. 1998. Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology 23:484- 490. Hoffmann, B. D., and A. N. Andersen. 2003. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology 28:444-464. Allen, A. P., J. H. Brown, and J. F. Gillooly. 2003. Response to comment on "Global biodiversity, biochemical kinetics, and the energetic-equivalence rule." Science 299:346. Funk, J. L., J. E. Larson, G. M. Ames, B. J. Butterfield, J. Cavender-Bares, J. Firn, D. C. Laughlin, A. E. Sutton-Grier, L. Williams, and J. Wright. 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92:1156-1173. Cooper, W. 2006. Risk factors and escape strategy in the grasshopper Dissosteira carolina. Behaviour 143:1201-1218. Stan Development Team. 2016. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.13.1. http://mc- stan.org/. Hemp, C., and A. Hemp. 2003. Saltatoria coenoses of high-altitude grasslands on Mt. Kilimanjaro, Tanzania (Orthoptera: Saltatoria). Ecotropica 9:71-97. Pakeman, R. J., and H. M. Quested. 2007. Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science 10:91-96. Basu, P. 1997. Seasonal and spatial patterns in ground foraging ants in a rain rorest in the Western Ghats, India. Biotropica 29:489- 500. Levings, S. C. 1983. Seasonal, annual, and among-site variation in the ground ant community of a deciduous tropical forest: some causes of patchy species distributions. Ecological Monographs 53:435-455. Keroumi, A. El, K. Naamani, H. Soummane, and A. Dahbi. 2012. Seasonal dynamics of ant community structure in the Moroccan Argan Forest. Journal of Insect Science 12:1-19. Raimundo, R., A. Freitas, and P. Oliveira. 2009. Seasonal patterns in activity rhythm and foraging ecology in the Neotropical forest- dwelling ant, Odontomachus chelifer (Formicidae: Ponerinae). Annals of the Entomological Society of America 102:1151-1157. Carignan, V., and M.-A. Villard. 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment 78:45-61. Hurlbert, A. H., F. Ballantyne, and S. Powell. 2008. Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecological Entomology 33:144-154. Cadotte, M. W., and C. M. Tucker. 2017. Should environmental filtering be abandoned? Trends in Ecology + Evolution 32:429- 437. Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346-363. Shingleton, A. W., W. A. Frankino, T. Flatt, H. F. Nijhout, and D. J. Emlen. 2007. Size and shape: the developmental regulation of static allometry in insects. BioEssays 29:536-548. Bruhl, C. A., T. Eltz, K. E. Linsenmair, C. A. Brühl, T. Eltz, and K. E. Linsenmair. 2003. Size does matter -effects of tropical rainforest fragmentation on the leaf litter ant community in Sabah, Malaysia. Biodiversity + Conservation 12:1371-1389. Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. smatr 3 -an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3:257-259. Wilcke, W., Y. Oelmann, A. Schmitt, C. Valarezo, W. Zech, and J. Homeier. 2008. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. Journal of Plant Nutrition and Soil Science 171:220-230. Blois, J. L., J. W. Williams, M. C. Fitzpatrick, S. T. Jackson, and S. Ferrier. 2013. Space can substitute for time in predicting climate- change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America 110:9374-9. Pickett, S. T. A. 1989. Space-for-time substitution as an alternative to long-term studies. Pages 110-135in G. E. Likens, editor.Long-term studies in ecology: approaches and alteratives. Springer, New York. Kaspari, M., M. Yuan, and L. Alonso. 2003. Spatial grain and the causes of regional References diversity gradients in ants. The American Naturalist 161:459-477. Devictor, V., D. Mouillot, C. Meynard, F. Jiguet, W. Thuiller, and N. Mouquet. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13:no-no. Field, R., B. A. Hawkins, H. V. Cornell, D. J. Currie, J. A. F. Diniz-Filho, J.-F. Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O'Brien, and J. R. G. Turner. 2009. Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography 36:132-147. Maeda, E. E., and P. Hurskainen. 2014. Spatiotemporal characterization of land surface temperature in Mount Kilimanjaro using satellite data. Theoretical and Applied Climatology 118:497-509. De Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56:879-886. Wohlgemuth, D., M. Solan, and J. A. Godbold. 2017. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proceedings of the Royal Society of London B: Biological Sciences 284. Barnes, A. D., P. Weigelt, M. Jochum, D. Ott, D. Hodapp, N. F. Haneda, and U. Brose. 2016. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 371:20150279. Grossman, J. J., J. Cavender-Bares, S. E. Hobbie, P. B. Reich, and R. A. Montgomery. 2017. Species richness and traits predict overyielding in stem growth in an early- successional tree diversity experiment. Ecology 38:42-49. Veach, V., E. Di Minin, F. M. Pouzols, and A. Moilanen. 2017. Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Diversity and Distributions 23:715-726. Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. Stan : a probabilistic programming language. Journal of Statistical Software 76. Hawkins, B. A., B. Leroy, M. Á. Rodríguez, A. Singer, B. Vilela, F. Villalobos, X. Wang, and D. Zelený. 2017. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. Journal of Biogeography 44:1199-1211. Parr, C. L., P. Eggleton, A. B. Davies, T. A. Evans, and S. Holdsworth. 2016. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97:1611-1617. Zavaleta, E. S., J. R. Pasari, K. B. Hulvey, and G. D. Tilman. 2010. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences of the United States of America 107:1443-6. Briggs, J. C. 1995. Global Biogeography. Developmen. Elsevier Science B.V., Amsterdam. Brook, B., N. Sodhi, and C. Bradshaw. 2008. Synergies among extinction drivers under global change. Trends in Ecology + Evolution 23:453-460. Raymo, M. E., and W. F. Ruddiman. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117-122. Atkinson, D. 1994. Temperature and organism size-a biological law for ectotherms? Pages 1-58in M. Begon and A. H. Fitter, editors.Advances in Ecological Research. Academic Press, London. Sanders, N. J., J.-P. Lessard, M. C. Fitzpatrick, and R. R. Dunn. 2007. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography 16:640-649. Angilletta, M. J., T. D. Steury, and M. W. Sears. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life- history puzzle. Integrative and comparative biology 44:498-509. Yasuhara, M., and R. Danovaro. 2016. Temperature impacts on deep-sea biodiversity. Biological Reviews 91:275- 287. Swenson, N. G., J. C. Stegen, S. J. Davies, D. L. Erickson, J. Forero-Montaña, A. H. Hurlbert, W. J. Kress, J. Thompson, M. Uriarte, S. J. Wright, and J. K. Zimmerman. 2012. Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology 93:490-499. Hodkinson, I. D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80:489-513. Graham, A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany 98:336-351. Bell, C. D., D. E. Soltis, and P. S. Soltis. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97:1296-1303. McNeill, D. deB. Richter, W. Steffen, J. Syvitski, D. Vidas, M. Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. Odada, N. Oreskes, and A. P. Wolfe. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351. C. Hamer. 2011. The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants. Philosophical Transactions of the Royal Society B: Biological Sciences 366:3256- 3264. Peacor, S. D., and E. E. Werner. 2001. The contribution of trait-mediated indirect effects to the net effects of a predator. PNAS 98:3904-3908. Stern, D., and D. Emlen. 1999. The developmental basis for allometry in insects. Development 126:1091-1101. Cadotte, M., C. H. Albert, and S. C. Walker. 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters 16:1234-1244. Abrams, P. A., O. Leimar, S. Nylin, and C. Wiklund. 1996. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist 147:381-395. Burrows, M., and G. P. Sutton. 2008. The effect of leg length on jumping performance of short-and long-legged leafhopper insects. Journal of Experimental Biology 211. Kessler, M. 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29:1159-1165. Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 2:200-205. Violle, C., P. B. Reich, S. W. Pacala, B. J. Enquist, and J. Kattge. 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America 111:13690-6. Roff, D. A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60:389- 421. Cardinale, B. J., K. L. Matulich, D. U. Hooper, J. E. Byrnes, E. Duffy, L. Gamfeldt, P. Balvanera, M. I. O'Connor, and A. Gonzalez. 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98:572-592. Naeem, S., J. E. Duffy, and E. Zavaleta. 2012. The functions of biological diversity in an age of extinction. Science 336:1401-1406. Walters, M., and R. J. Scholes. 2017. The GEO handbook on biodiversity observation networks. Page (M. Walters and R. J. Scholes, Eds.). Springer International Publishing, Cham. Segovia, R. A., and J. J. Armesto. 2015. The Gondwanan legacy in South American biogeography. Journal of Biogeography 42:209-217. Palmer, M. A., and C. M. Febria. 2012. The heartbeat of ecosystems. Science 336:1393- 1394. Slade, E. M., L. Kirwan, T. Bell, C. Philipson, O. T. Lewis, and T. Roslin. 2017. The importance of species identity and interactions on multifunctionality depends on how ecosystem functions are valued. Ecology in press. Swenson, N. G., B. J. Enquist, J. Thompson, and J. K. Zimmerman. 2007. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88:1770-1780. Kerkhoff, A. J., P. E. Moriarty, and M. D. Weiser. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences of the United States of America 111:8125-30. Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693-715. Blonder, B., C. Lamanna, C. Violle, and B. J. Enquist. 2014. The n -dimensional hypervolume. Global Ecology and Biogeography 23:595-609. Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-586. Alexander, G. 1951. The occurrence of Orthoptera at high altitudes, with special reference to Colorado Arcididae. Ecology 32:104-112. Queathem, E. 1991. The ontogeny of grasshopper jumping performance. Journal of Insect Physiology 37:129-138. Pontarp, M., and J. J. Wiens. 2017. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. Journal of Biogeography 44:722-735. Swenson, N. G., B. J. Enquist, J. Pither, J. Thompson, and J. K. Zimmerman. 2006. The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418-2424. Meinshausen, M., S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, and D. P. P. van Vuuren. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109:213-241. Winfree. 2017. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98:1807-1816. Whitman, D. W. 1987. Thermoregulation and daily activity patterns in a black desert grasshopper, Taeniopoda eques. Animal Behaviour 35:1814-1826. Underwood, E. C., and B. L. Fisher. 2006. The role of ants in conservation monitoring: if, when, and how. Biological Conservation 132:166-182. Swenson, N. G. 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American journal of botany 98:472-80. Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species- richness patterns. Ecology Letters 8:224- 239. Belovsky, G. E., and J. B. Slade. 1993. The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68:193- 201. Whitman, D. W. 2008. The significance of body size in the Orthoptera: a review. Journal of Orthoptera Research 17:117-134. Kaspari, M., and M. D. Weiser. 1999. The size- grain hypothesis and interspecific scaling in ants. Functional Ecology 13:530-538. Gaston, K. J., and T. M. Blackburn. 1996. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proceedings of the Royal Society of London B: Biological Sciences 263:63- 68. Körner, C. 2007. The use of "altitude" in ecological research. Trends in Ecology + Evolution 22:569-574. Read, J. L., and A. N. Andersen. 2000. The value of ants as early warning bioindicators: responses to pulsed cattle grazing at an Australian arid zone locality. Journal of Arid Environments 45:231-251. Boucher-Lalonde, V., R. X. De Camargo, J.-M. Fortin, S. Khair, R. I. So, H. Vázquez Rivera, D. Watson, J. Zuloaga, and D. J. Currie. 2015. The weakness of evidence supporting tropical niche conservatism as a main driver of current richness- temperature gradients. Global Ecology and Biogeography 24:795-803. Kaspari, M., L. Alonso, and S. O'Donnell. 2000. Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society B: Biological Sciences 267:485-489. Zelený, D., and A. P. Schaffers. 2012. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. Journal of Vegetation Science 23:419-431. Scholes, R. J., G. M. Mace, W. Turner, G. N. Geller, N. Jurgens, A. Larigauderie, D. Muchoney, B. A. Walther, and H. A. Mooney. 2008. Toward a global biodiversity observing system. Science 321:1044-1045. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1771-1789. Sousa, J. Storkey, D. A. Wardle, and P. A. Harrison. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation 19:2873-2893. Meyer, S. T., C. Koch, and W. W. Weisser. 2015. Towards a standardized rapid ecosystem function assessment (REFA). Trends in Ecology + Evolution 30:390-397. Antonelli, A., J. A. A. Nylander, C. Persson, and I. Sanmartín. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America 106:9749-9754. Van der Plas, F., T. M. Anderson, and H. Olff. 2012. Trait similarity patterns within grass and grasshopper communities: multitrophic community assembly at work. Ecology 93:836-846. Homeier, J., S. Breckle, S. Günter, R. Rollenbeck, and C. Leuschner. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species rich Ecuadorian montane rain forest. Biotropica 42:140-148. Letten, A. D., and W. K. Cornwell. 2015. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods in Ecology and Evolution 6:439-444. Yusah, K. M., and W. A. Foster. 2016. Tree size and habitat complexity affect ant communities (Hymenoptera: Formicidae) in the high canopy of Bornean rain forest. Myrmecol. News 23:15-23. Pace, M. L., J. J. Cole, S. R. Carpenter, and J. F. Kitchell. 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology + Evolution 14:483-488. Donoso, D. A. 2017. Tropical ant communities are in long-term equilibrium. Ecological Indicators 83:515-523. Graham, C. H., J. L. Parra, B. A. Tinoco, F. G. Stiles, and J. A. McGuire. 2012. Untangling the influence of ecological and evolutionary factors on trait variation across hummingbird assemblages. Ecology 93:S99-S111. Hoffmann, B. D. 2010. Using ants for rangeland monitoring: Global patterns in the responses of ant communities to grazing. Ecological Indicators 10:105-111. Harrison, X. A. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. van der Have, T. M., and G. de Jong. 1996. Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology 183:329-340. Cadotte, M. W., J. Cavender-Bares, D. Tilman, and T. H. Oakley. 2009a. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695. Dangles, O., C. Magal, D. Pierre, A. Olivier, and J. Casas. 2005. Variation in morphology and performance of predator-sensing system in wild cricket populations. Journal of Experimental Biology 208. Peters, M. K., A. Mayr, J. Röder, N. J. Sanders, and I. Steffan-Dewenter. 2014a. Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. Journal of Biogeography 41:2245-2255. Janes, S. W. 1994. Variation in the species composition and mean body size of an avian foliage-gleaning guild along an elevational gradient: correlation with arthropod body size. Oecologia 98:369- 378. Rutowski, R. L. 2000. Variation of eye size in butterflies: inter-and intraspecific patterns. Journal of Zoology 252:187-195. Reeves, J. L. 2011. Vision should not be overlooked as an important sensory modality for finding host plants. Environmental Entomology 40:855-863. Land, M. F. 1997. Visual acuity in insects. Annual Review of Entomology 42:147-177. Prokopy, R. J. 1983. Visual detection of plants by herbivorous insects. Annual Review Entomol 28:337-364. Díaz, S., and M. Cabido. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology + Evolution 16:646-655. Jansson, R., G. Rodríguez-Castañeda, and L. E. Harding. 2013. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67:1741-1755. Frainer, A., B. G. McKie, and B. Malmqvist. 2014. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology 83:460-469. Shelomi, M. 2012. Where are we now? Bergmann's rule sensu lato in insects. The American Naturalist 180:511-519. Fayle, T. M., E. C. Turner, Y. Basset, R. M. Ewers, G. Reynolds, and V. Novotny. 2015. Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology + Evolution 30:334-346. Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology + Evolution 15:513-514. Klimes, P., C. Idigel, M. Rimandai, T. M. Fayle, M. Janda, G. D. Weiblen, and V. Novotny. 2012. Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology 81:1103-1112. Kaspari, M. 1996. Worker size and seed size selection by harvester ants in a neotropical forest. Oecologia 105:397-404. Ratnasingham, S., and P. D. N. Hebert. 2007. BOLD: The barcode of life data system (http://www.barcodinglife.org). Molecular ecology notes 7:355-364. 2017-12-07 Biodiversität Tiede, Yvonne Christin Tiede Yvonne Christin Biodiversität umfasst die Vielfalt innerhalb von Arten, zwischen Arten und von Ökosystemen. Sie stellt somit eine wichtige Grundlage für Interaktionen zwischen Arten, für Ökosystemprozesse und Ökosystemfunktionen dar. Anthropogene Einflüsse, z.B. Landnutzungsänderungen und Klimawandel, führen weltweit zu Veränderungen und Verlusten der Biodiversität, die sich wiederum auf die Stabilität und Funktionalität der Ökosysteme auswirken. Um Biodiversität und funktionelle Ökosysteme langfristig und effektiv erhalten und schützen zu können, ist ein umfassendes Verständnis von Biodiversität und ihrer taxonomischen, phylogenetischen und funktionellen Komponenten wichtig. Dazu gehört sowohl i) ein Verständnis der Verteilung von Biodiversität, als auch der Prozesse, die zu dieser Verteilung beitragen. Darüber hinaus bedarf es fundierten Wissens über ii) die Einflüsse von sich ändernden Umweltbedingungen auf Artengemeinschaften und iii) ein Verständnis der Beziehung zwischen den Biodiversitätskomponenten und Ökosystemprozessen. Entlang zweier tropischer Höhengradienten habe ich Muster der taxonomischen, phylogenetischen und funktionellen Komponenten von Biodiversität genutzt, um zu einem besseren Verständnis dieser drei Aspekte beizutragen. In einer Studie in den ecuadorianischen Anden habe ich mich mit der Zusammensetzung tropischer Baumartengemeinschaften und der sie beeinflussenden ökologischen und historischen Prozesse beschäftigt. Im Rahmen dieser Studie konnte ich zeigen, dass sich die Anzahl der Baumarten entlang des untersuchten Höhengradienten (~ 1000 – 3000 m ü. NN) nicht veränderte. Im Allgemeinen war die Vielfalt der evolutiven Abstammungslinien (Phylodiversität) auf den Untersuchungsflächen geringer als auf Grund des Artenpools zu erwarten wäre. Dieses Ergebnis legt nahe, dass Umweltvariablen (sogenannte Filter) das Vorkommen von Baumarten bestimmter Linien verhindern. Darüber hinaus konnte ich zeigen, dass sowohl die Phylodiversität, als auch das durchschnittliche evolutive Familienalter der vorkommenden Baumarten entlang des Höhengradienten zunahm. Dieses Muster wurde durch das Vorkommen von Baumarten aus den Gruppen der Angiospermen (Bedecktsamer) und Gymnospermen (Nacktsamer) getrieben. Diese gehörten überdurchschnittlich alten Pflanzenfamilien an, die ihren Ursprung in temperaten, nicht-tropischen Gebieten haben. Diese Ergebnisse legen nahe, dass einige Vertreter dieser Linien mit Anpassungen an temperates Klima einem Ausbreitungskorridor temperater Bedingungen folgten, der sich im Rahmen der Entstehung der Andenkette im Zeitalter des Paläogen (~ 65 bis ~ 23 mya) und Neogen (~ 23 mya bis 2,6 mya) bildete. Insgesamt zeigt diese Studie, dass sowohl ökologische (Umweltfilter), biogeographische (Hebung der Anden) und historische (Ausbreitung) Prozesse starken Einfluss auf die Zusammensetzung der heutigen Baumartengesellschaften in den tropischen Bergregenwäldern haben. In einer weiteren Studie habe ich mich den Zusammenhänge zwischen Umweltbedingungen und morphologischen Merkmalen von Artengemeinschaften gewidmet. Morphologische Merkmale haben erheblichen Einfluss auf die Fitness von Arten, da sie direkt die Wirkungen von Umweltbedingungen auf Organismen beeinflussen. Entlang eines Höhengradienten (~ 700 – 4400 m ü. NN) am Kilimandscharo in Tansania habe ich Zusammenhänge zwischen Temperatur und Habitatproduktivität und der Körpergröße, Flügellänge, Länge des hinteren Oberschenkels und Augengröße von Heuschreckengemeinschaften (Orthoptera) untersucht. Die drei letzteren Merkmale habe ich für Kovarianz mit Körpergröße korrigiert. Die mittlere Körpergröße, sowie die mittlere Flügellänge, Oberschenkellänge und Augengröße der Heuschrecken nahm konsistent mit abnehmender Temperatur entlang des Höhengradienten ab. Dieses Ergebnis verdeutlicht die Rolle von Temperatur als einen wichtigen Einflussfaktor auf die Körpergröße und andere morphologische Merkmale von Organismen. Bei wechselwarmen Organismen wirken sich abnehmende Temperaturen im Allgemeinen negativ auf temperaturabhängige biochemische Prozesse aus und führen beispielsweise zu geringeren Wachstumsraten und Verkürzungen von Wachstumsperioden im Larvenstadium. Außerdem ist die Stoffwechselrate bei niedrigen Temperaturen gering, so dass das Aufrechterhalten energieintensiver Merkmale, wie z.B. Flugmuskulatur und lange Flügel mit hohem Energieaufwand verbunden wäre. Die Verkürzung des hinteren Oberschenkels und die Verkleinerung der Augen mit zunehmender Höhe deuten auf einen abnehmenden Prädationsdruck hin, da diese Merkmale die Erkennung von Prädatoren und Fluchtmöglichkeiten positiv beeinflussen. Darüber hinaus zeigen meine Ergebnisse eine Abnahme der Körper- und Augengröße von Heuschreckengemeinschaften mit zu-nehmender Habitatproduktivität. Habitatproduktivität ist mit der Verfügbarkeit von pflanzlicher Nahrung und Versteckmöglichkeiten unter Vegetation verknüpft. Größere Körpergrößen können daher in Gebieten mit knapper Nahrung vorteilhaft sein, denn auf Grund größerer Energiereserven verringern große Körper das Risiko zu verhungern. Große Augen wiederum verbessern das Erkennen von Prädatoren, was in Gebieten mit wenig Deckung vorteilhaft sein kann. Diese Studie zeigt anschaulich, dass die Einbeziehung morphologischer Eigenschaften helfen kann, unser Verständnis der Beziehungen zwischen Umweltbedingungen und Artgemeinschaften zu verbessern. In einer dritten Studie habe ich wieder entlang eines Höhengradienten (~ 1000 – 3000 m ü. NN) der ecuadorianischen Anden gearbeitet, um die Beziehungen zwischen Umweltbedingungen, Ameisengemeinschaften und deren Einflüsse auf den Ökosystemprozess Prädation pflanzenfressender (herbivorer) Insekten zu untersuchen. Dabei habe ich mittels eines Pfadmodells die Effekte von Temperatur, Regen- bzw. Trockenzeit und Habitat-Degradation in fragmentierten Sekundärwäldern auf das Vorkommen von Ameisenarten bzw. den Artenreichtum von Ameisen, und die funktionelle Diversität von Ameisen untersucht. Das Modell enthielt des Weiteren die Effekte dieser Faktoren auf die Prädationsrate herbivorer Insekten (gemessen als Prädationsrate an Knetraupen). Auch diese Studie zeigt einen starken Einfluss von Temperatur: Sowohl das Vorkommen von Ameisenarten als auch deren Artenzahl nahm mit fallender Temperatur entlang des Höhengradienten ab und beide Maße waren während der Trockenzeit höher als in der Regenzeit. Das Vorkommen von Ameisenarten bzw. die Artenvielfalt der Ameisen war positiv mit der Prädationsrate der Knetraupen korreliert. Die beiden Maße der Ameisengemeinschaften könnten somit als Indikatoren für den Prädationsprozess dienen. Darüber hinaus macht diese Studie deutlich, dass Temperaturänderungen indirekt beispielsweise über Änderungen der Aktivität oder Häufigkeit von Arten ebenfalls Ökosystemprozesse beeinflussen können. Im Gegensatz zum Einfluss auf die Ameisengemeinschaften, war die Prädationsrate während der Trockenzeit geringer als während der Regenzeit. Dieses Ergebnis gibt einen Hinweis auf die tatsächliche Komplexität der Beziehungen zwischen Umweltbedingungen, Artengemeinschaften und Ökosystemprozessen. Ob beispielsweise eine Erhöhung der Temperatur durch den globalen Klimawandel tatsächlich zu einer Erhöhung der Prädationsrate im untersuchten Gebiet führen würde, ist schwer zu sagen, da viele weitere Faktoren die Zusammenhänge beeinflussen. Habitat-Degradation hatte weder auf die untersuchten Ameisengemeinschaften, noch auf den Prädationsprozess einen signifikanten Einfluss. Dieses Ergebnis deutet darauf hin, dass fragmentierte Sekundärwälder einen wichtigen Beitrag zur Erhaltung von Ameisengemeinschaften leisten können. Die Gemeinschaften in Sekundärwäldern scheinen denen in Primärwäldern in Bezug auf Aktivität, Artenreichtum und Beitrag zum Prädationsprozess vergleichbar zu sein. Allerdings könnte die angewandte Methode der Ameisenerfassung (Köderfallen) dazu geführt haben, dass spezialisierte Ameisenarten, die empfindlicher auf Habitat-Degradation reagieren, nicht erfasst wurden. Meine drei Studien zeigen deutlich die Vielseitigkeit verschiedener Aspekte der Biodiversitätsforschung, die uns Einblicke i) in die Prozesse hinter der Zusammensetzung von Artengemeinschaften, ii) in Interaktionen zwischen Umweltbedingungen und den morphologischen Eigenschaften von Arten, und iii) in die Zusammenhänge zwischen Umweltbedingungen, Arten und Ökosystemprozessen geben kann. Meine Studien veranschaulichen beispielhaft die Nützlichkeit von Höhengradienten als natürliche Forschungslabore und bestätigen den starken Einfluss von Temperatur auf Biodiversität und Ökosystemprozesse. Alle Studien demonstrieren außerdem die hohe Komplexität der Beziehungen zwischen Umweltbedingungen, Arten und Ökosystemprozessen. Nichts desto trotz wird in der dritten Studie deutlich, dass auch einfache Aktivitätsmaße, in diesem Falle von Ameisengemeinschaften , als Indikatoren für komplexe Ökosystemprozesse (hier die Prädation von herbivoren Insekten) dienen können. Das Verstehen von komplexen Zusammenhängen zwischen Biodiversität und dem Funktionieren wichtiger Prozesse innerhalb von Ökosystemen ist eine wichtige Grundvoraussetzung für deren effektiven Schutz. In einem Zeitalter zunehmender Beeinflussung von Ökosystemen durch den Menschen kann die Übertragung und Anwendung der Erkenntnisse aus der Biodiversitätsforschung daher einen wichtigen Beitrag zum Erhalt gesunder und widerstandsfähiger Ökosysteme leisten. Verschiedene Facetten von Biodiversität: Prozesse der Artenzusammensetzung, Zusammensetzung von Arteigenschaften und Funktionalität entlang tropischer Höhengradienten doctoralThesis ecology 152 application/pdf elevation gradient funktionelle Diversität phylodiversity Artengemeinschaften opus:7976 Biodiversität Biodiversity provides the basis for species interactions and ecosystem functioning. However, anthropogenic impacts – habitat degradation and climate change being the most severe – lead to dramatic declines in biodiversity and have even caused researchers to warn against the Earth’s sixth mass extinction (Ceballos et al. 2015). Decreasing biodiversity comprises a loss of taxonomic, genetic, and functional richness which affects ecosystems and related ecosystem processes. Despite its importance for effective conservation management, we are still far from a comprehensive understanding of the patterns of biodiversity, the processes that determine these patterns, impacts of changing environmental conditions, and the relationships between biodiversity and ecosystem functioning. Elevational gradients are well suited to study responses of species assemblages and their different taxonomic, phylogenetic, and functional components with changing environmental conditions. In this thesis, I focused on these different components of biodiversity to i) investigate assembly processes of tropical trees, ii) study responses of functionally important morphological traits of orthopteran assemblages to changes in temperature and productivity, and iii) disentangle relationships between changes in temperature, seasonality, and habitat degradation and the incidence, species richness, and functional richness of ants and the subsequent effects on the ecosystem process predation of herbivorous arthropods, thereby testing the suitability of ants as functional indicators for effective ecosystem monitoring. In the second chapter, I aimed to reveal assembly processes of tropical tree assemblages in the Andes. I studied patterns of species richness, phylogenetic diversity, and family age of tree assemblages to test predictions from the phylogenetic niche conservatism hypothesis (PNC) along an elevational gradient in the Ecuadorian Andes. Based on the latest available phylogenetic megatree of plants and age estimates for branch length calibration, I calculated two different phylogenetic diversity measures and the mean family age of tree assemblages. The two phylogenetic diversity measures focus on different evolutionary time scales of the phylogenetic structure of assemblages: The mean nearest taxon distance (MNTD) detects patterns close to the tips of the phylogenetic tree and therefore reflects the most recent evolutionary history. The mean pairwise phylogenetic distance (MPD) detects tree-wide patterns of the phylogenetic structure of co-occurring species. The mean family age resembles patterns from the deepest nodes within the phylogenetic tree. My findings contrast predictions from the PNC, which would suggest decreasing species richness, phylogenetic diversity, and decreasing mean family ages with decreasing temperatures along the studied elevation gradient. Instead, MPD and family age of tree assemblages increased with elevation, whereas species richness and MNTD were not related to elevation. Furthermore, tree assemblages were generally phylogenetically clustered which suggests environmental filtering as the main driver of tree assembly along the studied gradient. My results revealed that the occurrence of elements from old gymnosperm and angiosperm floras with extra-tropical origins at high elevations drive the phylogenetic and family age pattern of tree assemblages. This suggests that extra-tropical taxa with adaptations to temperate environments followed a corridor of temperate habitats that emerged in the course of the Andean uplift during the Neogene (Hoorn et al. 2010) to finally reach the high elevation habitats in the tropics (Segovia and Armesto 2015). The relatively young geographical history of the Andes, therefore, plays a major role in today’s composition of tree assemblages in the Andes (Qian 2014). These findings challenge the general applicability of the PNC for tropical elevation gradients. Furthermore, the findings underline that the recent tree assemblages in the Ecuadorian Andes were shaped by an interplay of ecological processes (environmental filtering), biogeographic events (the uplift of the Andes), as well as historical processes (immigration of flora elements with extra-tropical origins). The biogeographic history of mountains can, therefore, play important roles for the composition of recent tree assemblages along elevational gradients. In the third chapter, I aimed to reveal relationships between changing environmental factors and interspecific changes of body size and other morphological traits. In particular, I studied how four different morphological traits of orthopteran assemblages respond to changes in temperature and productivity along an elevational gradient at Mt. Kilimanjaro (Tanzania). The four traits cover four ecologically important aspects of Orthoptera assemblages: Body size is related to fecundity, wing length influences dispersal ability, hind femur length relates to jumping ability, and eye size is positively related to predator detection. First, I calculated a multivariate measure of the overall body size of species of ten morphological traits. I corrected the morphological traits for covariation with body size and used community weighted means as a measure of interspecific trait values. Finally, I used Bayesian linear mixed-effect models to analyze the effects of elevation (as a proxy for temperature) and productivity on the trait values of orthopteran assemblages. I found that body size decreased linearly with increasing elevation. Independently of the pattern of body size, the relative wing length, hind femur length, and eye size also decreased with increasing elevation. My findings emphasize the importance of changes in temperature not only for body size but also for other morphological traits of orthopteran assemblages. The effect of temperature on body size is suggested to derive from temperature-dependent biochemical processes that shorten larval growth periods, and negatively affect growth rates (van der Have and de Jong 1996, Chown and Gaston 2010). Low temperatures at high elevations also decrease the metabolic rates of insects which hampers flight ability (Dillon et al. 2006) and would make the maintenance of long wings and flight ability resource intensive. The decrease of hind femur length and eye size might rather suggest a potentially decreasing predator pressure with increasing elevation. Besides temperature, productivity negatively affected body size and eye size of orthopteran assemblages. Productivity is positively linked to the availability of plants that provide hiding abilities and resources for orthopteran species. Areas with low productivity may, therefore, be associated with an increased risk of predation and starvation (Denno et al. 2003). Habitats with low productivity might thus favor Orthoptera assemblages with larger body sizes that reduce starvation risk, as well as larger eyes that enhance predator detection. The results underline that morphological adaptations to changing environmental conditions go beyond changes in body size and involve independent adaptations of other morphological traits. The inclusion of other morphological traits in studies of size clines along environmental gradients can, therefore, help to better understand interactions between organisms and their environment. In the fourth chapter, I aimed to test the suitability of different measures of ant assemblages as indicators of ecological responses to environmental changes, habitat degradation, and of the ecosystem process predation of herbivorous arthropods. To do so, I studied the relationships between changes in elevation (as a proxy for temperature), season, and habitat degradation on the incidence, species richness, and functional diversity of ants and their combined effects on the predation process along an elevational gradient in the Ecuadorian Andes. First, I used an easily applicable baiting approach to sample the epigaeic ant assemblages. Then I determined the incidence and species richness of the ant assemblages. I used the multidimensional trait space of four predation-related morphological traits of ants to obtain a measure of the functional richness of ant assemblages. Furthermore, I quantified the predation of herbivorous arthropods using artificial caterpillars made of plasticine. In the last step, I used a path analysis to disentangle the causal relationships between the environmental factors temperature, season, and habitat degradation and the incidence, species richness, and functional diversity of ants and their combined effect on predation rates. Both ant incidence and species richness decreased with increasing elevation and were higher during the dry season. Ant incidence and richness positively affected the predation of artificial caterpillars. These findings suggest that the forecasted global warming would support more active and species-rich ant assemblages, which would mediate increased predation of herbivorous arthropods. Opposing the finding of ant in-cidence and richness, predation rates were lower during the dry season and higher during the wet season. This emphasizes that relationships between changes in temperature, precipitation, species assemblages, and ecosystem processes are complex and therefore difficult to predict (Colwell et al. 2008, Lavergne et al. 2010). Surprisingly, I did not find significant effects of habitat degradation on the incidence or species richness of ants, nor on the predation of herbivorous arthropods. This suggests that degraded forests in the study area provide a suitable habitat for epigaeic, ground-dwelling ant assemblages that resemble assemblages in natural forests in terms of their incidence, richness, and predation of herbivorous arthropods. However, it is important to consider that the sampling approach (bait traps) might not have attracted resource-specialized ant species that might be more sensitive to habitat degradation. The functional richness of ant assemblages decreased with elevation, however, a null-model comparison revealed that the functional richness measure was biologically not meaningful. The measured traits were thus mainly driven by ant incidence instead of elevation. Altogether, my results suggest that the incidence and species richness of ants can serve as effective indicators of responses to changes in temperature and precipitation and of the ecosystem process predation of herbivorous arthropods. Ökologie 2017 ths Prof. Dr. Farwig Nina Farwig, Nina (Prof. Dr.) monograph funktionelle Eigenschaften Philipps-Universität Marburg functional diversity Life sciences Biowissenschaften, Biologie 2018-01-09 assemblages Höhengradient English Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg urn:nbn:de:hebis:04-z2018-00460 Fachbereich Biologie phylogenetische Diversität https://doi.org/10.17192/z2018.0046