Kählersche Geometrie auf Hurwitz-Räumen

Der klassische Hurwitz-Raum ist ein feiner Modulraum für einfach verzweigte Überlagerungen der Riemannschen Zahlenkugel. In dieser Arbeit wird dieser mit Mitteln der komplexen Differentialgeometrie untersucht. Wir studieren eine verallgemeinerte Weil-Petersson-Metrik auf dem Hurwitz-Raum. Zu diesem...

Full description

Saved in:
Bibliographic Details
Main Author: Naumann, Philipp
Contributors: Schumacher, Georg (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2016
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Der klassische Hurwitz-Raum ist ein feiner Modulraum für einfach verzweigte Überlagerungen der Riemannschen Zahlenkugel. In dieser Arbeit wird dieser mit Mitteln der komplexen Differentialgeometrie untersucht. Wir studieren eine verallgemeinerte Weil-Petersson-Metrik auf dem Hurwitz-Raum. Zu diesem Zweck wird Horikawas Deformationstheorie für holomorphe Abbildungen in Anwesenheit von Metriken entwickelt. Es wird eine Krümmungsformel für ein holomorphes Unterbündel des Tangentialbündels an den Hurwitz-Raum gegeben. Daraus lässt sich die Krümmung von natürlichen Unterräumen dieses Modulraums gewinnen.
Physical Description:103 Pages
DOI:10.17192/z2016.0228