Kählersche Geometrie auf Hurwitz-Räumen
Der klassische Hurwitz-Raum ist ein feiner Modulraum für einfach verzweigte Überlagerungen der Riemannschen Zahlenkugel. In dieser Arbeit wird dieser mit Mitteln der komplexen Differentialgeometrie untersucht. Wir studieren eine verallgemeinerte Weil-Petersson-Metrik auf dem Hurwitz-Raum. Zu diesem...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | German |
Published: |
Philipps-Universität Marburg
2016
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Der klassische Hurwitz-Raum ist ein feiner Modulraum für einfach verzweigte Überlagerungen der Riemannschen Zahlenkugel. In dieser Arbeit wird dieser mit Mitteln der komplexen Differentialgeometrie untersucht. Wir studieren eine verallgemeinerte Weil-Petersson-Metrik auf dem Hurwitz-Raum. Zu diesem Zweck wird Horikawas Deformationstheorie für holomorphe Abbildungen in Anwesenheit von Metriken entwickelt. Es wird eine Krümmungsformel für ein holomorphes Unterbündel des Tangentialbündels an den Hurwitz-Raum gegeben. Daraus lässt sich die Krümmung von natürlichen Unterräumen dieses Modulraums gewinnen. |
---|---|
Physical Description: | 103 Pages |
DOI: | 10.17192/z2016.0228 |