Hidden Markov models: Estimation theory and economic applications

In this thesis, maximum likelihood estimation of hidden Markov models in several settings is investigated. Nonparametric estimation of state-dependent general mixtures and log-concave densities is discussed theoretically and algorithmically. Penalized estimation for parametric hidden Markov models c...

Full description

Saved in:
Bibliographic Details
Main Author: Leister, Anna Maria
Contributors: Holzmann, Hajo (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2016
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

Die vorliegende Arbeit behandelt Maximum Likelihood Schätzung von Hidden Markov Modellen in unterschiedlichen Szenarien. Nichtparametrische Schätzung zustandsbedingter Mischungsmodelle und log-konkaver Dichten wird theoretisch und algorihmisch diskutiert. Penalisierte Schätzung für parametrische Hidden Markov Modelle unter unterschiedlichen Penalisierungsfunktionen wird untersucht. Diverse Modelle basierend auf Mischungsmodellen und Hidden Markov Modellen mit und ohne Kovariablen werden auf einen makroökonomischen Paneldatensatz zur Untersuchung von Einkommensverteilungen angewendet.