Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227:680–685 Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., and Smith, H. O. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 6:343–5 Frohman, M. A. 1993. Rapid amplification of complementary DNA ends for generation of full- length complementary DNAs: thermal RACE. Methods Enzymol. 218:340–56 Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783–95 Meir, S., Amsellem, Z., Al-Ahmad, H., Safran, E., and Gressel, J. 2009. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche--failure and success. Pest Manag. Sci. 65:588–95 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–10 Covert, S. F. 1998. Supernumerary chromosomes in filamentous fungi. Curr. Genet. 33:311–319 Rodrigues, M. L., and Djordjevic, J. T. 2012. Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia. 173:407–18 Muthamilarasan, M., and Prasad, M. 2013. Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 38:433–49 Teichert, I., Nowrousian, M., Pöggeler, S., and Kück, U. 2014. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. Adv. Genet. 87:199– 244 Donofrio, N. M., and Raman, V. 2012. Roles and delivery mechanisms of fungal effectors during infection development: common threads and new directions. Curr. Opin. Microbiol. 15:692–8 Herbers, K., Meuwly, P., Métraux, J. P., and Sonnewald, U. 1996. Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett. 397:239–44 Zhan, J., Pettway, R. E., and McDonald, B. A. 2003. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol. 38:286– 297 Hetzer, M., Gruss, O. J., and Mattaj, I. W. 2002. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell Biol. 4:E177–84 Arraiano, L. S., Brading, P. A., and Brown, J. K. M. 2001. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol. 50:339–346 Sanderson, F. R. 1972. A Mycosphaerella species as the ascogenous state of Septoria tritici Rob. and Desm. New Zeal. J. Bot. 10:707–709 Librado, P., and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25:1451–2 Stukenbrock, E. H., Banke, S., Javan-Nikkhah, M., and McDonald, B. A. 2007. Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol Biol Evol. 24:398–411 Brunner, P. C., Torriani, S. F. F., Croll, D., Stukenbrock, E. H., and McDonald, B. A. 2013. Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol. Biol. Evol. 30:1337–1347 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–402 Lee, W.-S., Rudd, J. J., Hammond-Kosack, K. E., and Kanyuka, K. K. 2013. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant. Microbe. Interact. Baldwin, T. K., Winnenburg, R., Urban, M., Rawlings, C., Koehler, J., and Hammond-Kosack, K. E. 2006. The pathogen-host interactions database (PHI-base) provides insights into generic and novel themes of pathogenicity. Mol. Plant. Microbe. Interact. 19:1451–62 Ginkel, M. van, and Scharen, A. 1987. Generation mean analysis and heritabilities of resistance to Septoria tritici in durum wheat. Phytopathology. Stukenbrock, E. H., Bataillon, T., Dutheil, J. Y., Hansen, T. T., Li, R., Zala, M., McDonald, B. A., Wang, J., and Schierup, M. H. 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21:2157–2166 Doehlemann, G., Reissmann, S., Assmann, D., Fleckenstein, M., and Kahmann, R. 2011. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 81:751–66 Manning, V. A., Chu, A. L., Scofield, S. R., and Ciuffetti, L. M. 2010. Intracellular expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a ToxA-interacting protein, ToxABP1. New Phytol. 187:1034–1047 Kale, S. D. 2012. Oomycete and fungal effector entry, a microbial Trojan horse. New Phytol. 193:874–81 Catanzariti, A. M., Dodds, P. N., and Ellis, J. G. 2007. Avirulence proteins from haustoria- forming pathogens. FEMS Microbiol Lett. 269:181–188 Stukenbrock, E. H. 2013. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol. Mehrabi, R., and Kema, G. H. 2006. Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensing. Mol Plant Pathol. 7:565–577 De Jonge, R., van Esse, H. P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol, S., Shibuya, N., Joosten, M. H. A. J., and Thomma, B. P. H. J. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 329:953–5 Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K. E., Thomma, B. P. H. J., and Rudd, J. J. 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 156:756–69 De Jonge, R., Bolton, M. D., and Thomma, B. P. H. J. 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14:400–6 Santhanam, P., Esse, P. van, Albert, I., Faino, L., Nürnberger, T., and Thomma, B. P. H. J. 2012. Evidence for Functional Diversification within a Fungal NEP1-Like Protein Family. Mol. Plant. Microbe. Interact. Literature 81 Solomon, P. S., Tan, K.-C., and Oliver, R. P. 2003. The nutrient supply of pathogenic fungi; a fertile field for study. Mol. Plant Pathol. 4:203–210 Narayanan, N. N., Grosic, S., Tasma, I. M., Grant, D., Shoemaker, R., and Bhattacharyya, M. K. 2009. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction. Theor. Appl. Genet. 118:399–412 Schulze-Lefert, P., and Panstruga, R. 2011. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16:117– 125 Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364–377 Khang, C. H., Berruyer, R., Giraldo, M. C., Kankanala, P., Park, S. Y., Czymmek, K., Kang, S., and Valent, B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 22:1388–1403 Draper, J., Mur, L. A., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R., and Routledge, A. P. 2001. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127:1539–1555 Houben, A., Banaei-Moghaddam, A. M., Klemme, S., and Timmis, J. N. 2014. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 71:467–78 Kema, G. H. J., Yu, D., Rijkenberg, F. H. J., Shaw, M. W., and Baayen, R. P. 1996. Histology of pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology. 7:777–786 Lazo, G. R., Stein, P. A., and Ludwig, R. A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology. (N. Y). 9:963–7 Miao, V. P., Covert, S. F., and VanEtten, H. D. 1991. A fungal gene for antibiotic resistance on a dispensable ( " B " ) chromosome. Science. 254:1773–1776 Brefort, T., Tanaka, S., Neidig, N., Doehlemann, G., Vincon, V., and Kahmann, R. 2014. Characterization of the Largest Effector Gene Cluster of Ustilago maydis. PLoS Pathog. 10:e1003866 Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517 Wichmann, G., and Bergelson, J. 2004. Effector Genes of Xanthamonas axonopodis pv. vesicatoria Promote Transmission and Enhance Other Fitness Traits in the Field. Genetics. 706:693–706 Desmazières, J. B. H. J. 1842. Neuviéme notice sur quelques plantes cryptogames. Ann. des Sci. Nat. Bot. Série 2 17:91–118 MacFarlane H.H. 1968. Plant host -pathogen index to volumes 1-40 (1922-1961). Commonwealth Mycological Institute. Kew,. Ponomarenko, A., Goodwin, S. B., and Kema, G. H. J. 2011. Septoria tritici blotch (STB) of wheat Septoria tritici blotch (STB) of wheat. Plant Heal. Instr. :1–7 Bowler, J., Scott, E., Tailor, R., Scalliet, G., Ray, J., and Csukai, M. 2010. Technical advance New capabilities for Mycosphaerella graminicola research. Mol Plant Pathol. 11:691–704 Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature. 444:323–329 Chen, W., and Moore, M. J. 2014. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 24:141–9 Gopher, A., Abbo, S., and Lev-Yadun, S. 2002. The " when " , the " where " and the " why " of the Neolithic revolution in the Levant. Pages 28:49–62 in: Documenta Praehistorica XXVIII, Gouy, M., Guindon, S., and Gascuel, O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27:221–4 Rudd, J. J., Keon, J., Antoniw, J., Carzaniga, R., Deller, S., Ward, J. L., Baker, J. M., Beale, M. H., and Hammond-Kosack, K. 2007. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Mol. Plant- Microbe Interact. 20:178–193 Moore, A. M. T., Hillman, G. C., and Legge, A. J. 2000. Village on the Euphrates: from foraging to farming at Abu Hureyra. London : New York : Oxford University Press. Barbieri, M., Marcel, T. C., Niks, R. E., Francia, E., Pasquariello, M., Mazzamurro, V., Garvin, D. F., and Pecchioni, N. 2012. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L. Genome. 55:152–63 Mikkelsen, L., Sarrocco, S., Lübeck, M., and Jensen, D. F. 2003. Expression of the red fluorescent protein DsRed-Express in filamentous ascomycete fungi. FEMS Microbiol. Lett. 223:135–9 Schrödinger, LLC. 2010. The {PyMOL} Molecular Graphics System, Version~1.3r1. Kellner, R., Bhattacharyya, A., Poppe, S., Hsu, T. Y., Brem, R. B., and Stukenbrock, E. H. 2014. Expression Profiling of the Wheat Pathogen Zymoseptoria tritici Reveals Genomic Patterns of Transcription and Host-Specific Regulatory Programs. Genome Biol. Evol. 6:1353–65 Williamson, M. P. 1994. The structure and function of proline-rich regions in proteins. Biochem. J. 297:249–260 Sambrook, J., Russell, D. W., and Laboratory, C. S. H. 2001. Molecular cloning : a laboratory manual. 3rd. ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. Van Der Hoorn, R. A. L., and Kamoun, S. 2008. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell. 20:2009–2017 Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D., and Kahmann, R. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 5:e1000290 Wittenberg, A. H. J., van der Lee, T. A. J., Ben M'barek, S., Ware, S. B., Goodwin, S. B., Kilian, A., Visser, R. G. F., Kema, G. H. J., and Schouten, H. J. 2009. Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. J.E. Stajich, ed. PLoS One. 4:e5863 Panstruga, R., and Dodds, P. N. 2009. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science. 324:748–50 Wahl, R., Wippel, K., Goos, S., Kämper, J., and Sauer, N. 2010. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. J. Heitman, ed. PLoS Biol. 8:e1000303 Roy, A., Kucukural, A., and Zhang, Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5:725–38 Stukenbrock, E. H., Jørgensen, F. G., Zala, M., Hansen, T. T., McDonald, B. A., Schierup, M. H., and Jorgensen, F. G. 2010. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. H.S. Malik, ed. PLoS Genet. 6:e1001189 Mullins, J. G. L., Parker, J. E., Cools, H. J., Togawa, R. C., Lucas, J. A., Fraaije, B. A., Kelly, D. E., and Kelly, S. L. 2011. Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One. 6:e20973 Baltrus, D. A., Nishimura, M. T., Romanchuk, A., Chang, J. H., Mukhtar, M. S., Cherkis, K., Roach, J., Grant, S. R., Jones, C. D., and Dangl, J. L. 2011. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 7:e1002132 Hinnebusch, A. G. 2011. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 75:434–67, first page of table of contents Makde, R. D., England, J. R., Yennawar, H. P., and Tan, S. 2010. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature. 467:562–6 Jonge, R. De, Esse, H. P. Van, Maruthachalam, K., Bolton, M. D., Santhanam, P., de Jonge, R., Peter van Esse, H., Saber, M. K., Zhang, Z., Usami, T., Lievens, B., Subbarao, K. V, and Thomma, B. P. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A. 109:5110–5115 Croll, D., and McDonald, B. A. 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8 Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M., and Doehlemann, G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 8:e1002684 Pandelova, I., Figueroa, M., Wilhelm, L. J., Manning, V. A., Mankaney, A. N., Mockler, T. C., and Ciuffetti, L. M. 2012. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility. PLoS One. 7:e40240 Collmer, A., Badel, J. L., Charkowski, A. O., Deng, W. L., Fouts, D. E., Ramos, A. R., Rehm, A. H., Anderson, D. M., Schneewind, O., van Dijk, K., and Alfano, J. R. 2000. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. U. S. A. 97:8770–7 Djamei, A., and Kahmann, R. 2012. Ustilago maydis: dissecting the molecular interface between pathogen and plant. J. Heitman, ed. PLoS Pathog. 8:e1002955 Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K., and Hansen, J. C. 2013. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface. 10:20121022 Croll, D., Zala, M., and McDonald, B. A. 2013. Breakage-fusion-bridge Cycles and Large Insertions Contribute to the Rapid Evolution of Accessory Chromosomes in a Fungal Pathogen. PLoS Genet. 9 Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., and Ver Loren van Themaat, E. 2013. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl. Acad. Sci. U. S. A. 110:E2219–28 Cohen, S. N., Chang, A. C., and Hsu, L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U. S. A. 69:2110–4 Hoffman, C. S., and Winston, F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 57:267–272 Kamoun, S. 2007. Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol. 10:358–365 Chen, X.-L., Shi, T., Yang, J., Shi, W., Gao, X., Chen, D., Xu, X., Xu, J.-R., Talbot, N. J., and Peng, Y.-L. 2014. N-glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell. 26:1360–76 Die drei nah verwandten Ascomyceten Zymoseptoria tritici (Synonym: Mycosphaerella graminicola), Z. pseudotritici und Z. ardabiliae sind hemibiotrophe Pflanzenpathogene mit verschieden Wirtsspektren. Z. tritici tritt seit den Anfängen der Landwirtschaft auf und ist auf die Wirtspflanze Weizen (Triticum aestivum) spezialisiert. Hingegen können Z. pseudotritici und Z. ardabiliae Weizen nicht infizieren und befallen verschiedene Wildgräser. Beschleunigte Evolution von einzelnen Genen ist ein Hauptmerkmal der Anpassung von pathogenen nach einem Wirtswechsel. Positiv selektionierte Gene zeigen eine erhöhte Rate von nicht-synonymen (sinnverändernden) Mutationen zu synonymen (stillen) Mutationen. Eine Rate über 1 deutet auf positive Selektion hin und diese positiv selektionierten Gene können durch Genomvergleiche von nah verwandten Arten mit verschiedenen Wirtsspektren identifiziert werden. Durch einen Genomvergleich der beschriebenen Zymoseptoria Arten wurden die vier positiv selektionierten Gene Zt80707, Zt89160, Zt103264, und Zt110804 ausgesucht. In dieser Arbeit wurde gezeigt das die vier identifizierten Gene in planta hochreguliert sind und durch ein in vitro Stress-Assay konnte belegt werden, dass diese Gene keinen Einfluss auf das axenische Wachstum von Z. tritici haben. Beide Ergebnisse unterstützen eine mögliche Rolle der Gene in der Pathogenität von Z. tritici. Die Deletion von Zt80707 und Zt103264 führte zu einer signifikanten Reduktion der Virulenz von Z. tritici auf Weizen und beide Deletionsmutanten zeigten eine beeinträchtigte Entwicklung der asexuellen Fruchtkörper (Pyknidien). Die Deletion von Zt89160 führte zu einer Hypervirulenz auf Weizen während der vierte Deletionsstamm (Zt110804) keine Veränderung der Virulenz zeigte. Ferner wurde gezeigt, dass das Protein Zt80707 ausschließlich in Z. tritici sekretiert ist, was darauf hindeutet, dass die positive Selektion dieses Proteins mit der neuen extrazellulären Funktion in Verbindung steht. Eine Anpassung an die Wirtspflanze Weizen konnte für die Proteine Zt80707 und Zt89160 demonstriert werden, da beide Deletions-Phänotypen nicht oder nur teilweise wiederhergestellt werden konnten, wenn die korrespondierenden Gene durch deren Orthologe von Z. pseudotritici ersetzt werden. Die präsentierten Ergebnisse verdeutlichen, dass evolutionäre Voraussagen ein hervorragendes Mittel sind um Gene zu identifizieren, die in der Anpassung an den Wirt und die Entwicklung von Pathogenen involviert sind. Zusätzlich wurde gezeigt, dass adaptive Evolution durch die Anpassung an einen Wirt auch nicht sekretierte Proteine beeinflusst. ppn:356018830 Host specialisation Wheat Life sciences Biowissenschaften, Biologie https://doi.org/10.17192/z2015.0079 Septoria tritici Poppe, Stephan Poppe Stephan monograph ths Prof. Dr. Stukenbrock Eva Stukenbrock, Eva (Prof. Dr.) Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Evolution urn:nbn:de:hebis:04-z2015-00792 Spezialisierung Wirtsspezialisierung des pflanzenpathogenen Pilzes Zymoseptoria tritici Weizen Biologie Phytopathologie Positive selection 2015-02-26 Septoria tritici Phytopathology application/pdf 2015-02-17 doctoralThesis Fachbereich Biologie English Host specialization in the fungal plant pathogen Zymoseptoria tritici opus:5966 2015 Philipps-Universität Marburg https://archiv.ub.uni-marburg.de/diss/z2015/0079/cover.png The three closely related plant pathogenic species Zymoseptoria tritici (synonym: Mycosphaerella graminicola), Z. pseudotritici and Z. ardabiliae are hemi-biotrophic, ascomycete fungi with different host ranges. Z. tritici emerged at the onset of agriculture and is specialized to its host Triticum aestivum (bread wheat). In contrast Z. pseudotritici and Z. ardabiliae infect different wild grass species at the center of origin and diversification of the Zymoseptoria grass pathogens and are unable to infect wheat. Accelerated evolution of single genes is a key feature of pathogen adaptation following a host shift. Genes under positive selection exhibit an elevated ratio of non-synonymous (replacement) mutations to synonymous (silent) mutations. A ratio above 1 is indicative of positive selection and these positively selected genes can be identified by comparative genome analyses of closely related species that infect different hosts. From a comparative genome study of Zymoseptoria species the four positively selected genes Zt80707, Zt89160, Zt103264, and Zt110804 were chosen without a priori information about gene function or structure. In this study it was shown that the four selected genes are up-regulated in planta. The genes are not involved in axenic growth of Z. tritici as shown by an in vitro assay, supporting a pathogenicity related role of the four gene products. The virulence of Z. tritici on wheat was significantly reduced for the two deletion mutants (Zt80707 and Zt103264) and both showed an impaired development of the asexual fruiting bodies (pycnidia) on wheat. The deletion of Zt89160 caused a hypervirulent reaction in wheat while the fourth mutant (Zt110804) showed no detectable change in virulence-phenotype. The protein Zt80707 was moreover shown to be exclusively secreted in Z. tritici indicating that positive selection in this protein most likely relates to a novel extracellular function. Adaptation to the host plant wheat was shown for the proteins Zt80707 and Zt89160 as both deletion phenotypes could not or only partially be restored when the genes in Z. tritici were replaced with their orthologs of Z. pseudotritici. The presented results demonstrate that evolutionary predictions provide a strong tool for the identification of genes involved in host adaptation and pathogen development. In addition it was shown that adaptive evolution during host specialization also strongly affects non-secreted proteins without effector function (Zt89160, Zt103264, and Zt110804).