https://archiv.ub.uni-marburg.de/diss/z2014/0790/cover.png Pohlkamp, Ruth Pohlkamp Ruth Proliferation German Karzinogenese 2014 Rosewicz, S.; Wiedenmann, B. (1997): Pancreatic carcinoma. In: Lancet 349 (9050), S. 485–489. Rivenson, A.; Hoffmann, D.; Prokopczyk, B.; Amin, S.; Hecht, S. S. (1988): Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines. In: Cancer Res. 48 (23), S. 6912–6917. Tsurutani, Junji; Castillo, S. Sianna; Brognard, John; Granville, Courtney A.; Zhang, Chunyu; Gills, Joell J. et al. (2005): Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. In: Carcinogenesis 26 (7), S. 1182–1195. Duell, Eric J. (2012): Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer. In: Mol Carcinog 51 (1), S. 40–52. Miguel, Ana de et al. (2005): Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. In: Clin Transl Oncol 7 (5), S. 189–197. Takahashi, Hiroyuki; Ogata, Hisanobu; Nishigaki, Reiko; Broide, David H.; Karin, Michael (2010): Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. In: Cancer Cell 17 (1), S. 89–97. Phillips, Jennifer M.; Goodman, Jay I. (2009): Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. In: Toxicology 260 (1-3), S. 7–15. Song, Zhigang; Bhagat, Govind; Quante, Michael; Baik, Gwang Ho; Marrache, Frederic; Tu, Shui Ping et al. (2010): Potential carcinogenic effects of cigarette smoke and Swedish moist snuff on pancreas: a study using a transgenic mouse model of chronic pancreatitis. In: Lab. Invest. 90 (3), S. 426–435. Localization of a portion of extranuclear ATM to peroxisomes. In: J. Biol. Chem. 274 (48), S. 34277–34282. Sugimoto, Atsuhiko; Masuda, Haruchika; Eguchi, Masamichi; Iwaguro, Hideki; Tanabe, Teruhisa; Asahara, Takayuki (2007): Nicotine enlivenment of blood flow recovery following endothelial progenitor cell transplantation into ischemic hindlimb. In: Stem Cells Dev. 16 (4), S. 649–656. Duell, E. J.; Lucenteforte, E.; Olson, S. H.; Bracci, P. M.; Li, D.; Risch, H. A. et al. (2012): Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). In: Annals of Oncology 23 (11), S. 2964–2970. Folkman, J. (1990): What is the evidence that tumors are angiogenesis dependent? In: J Natl Cancer Inst 82 (1), S. 4–6. (2013): DNA adduct formation of 2-amino-9H-pyrido2,3-bindole and 2-amino-3,4- dimethylimidazo4,5-fquinoline in mouse liver and extrahepatic tissues during a subchronic feeding study. In: Toxicol Sci 133 (2), S. 248–258. Marco K. C. et al. (2005): 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone from cigarette smoke stimulates colon cancer growth via beta-adrenoceptors. In: Cancer Res 65 (12), S. 5272–5277. Shi, Dingbo; Guo, Wei; Chen, Wangbin; Fu, Lingyi; Wang, Jingshu; Tian, Yung et al. (2012): Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating alpha7AChR, ERK, HIF-1alpha and VEGF/PEDF signaling. In: PLoS One 7 European Commission (2010): Special Eurobarometer 332 Tobacco. European Commission. Online verfügbar unter http://ec.europa.eu/health/tobacco/docs/ebs332_en.pdf, zuletzt aktualisiert am 04.05.2010, zuletzt geprüft am 28.11.2012. Vermeulen, P. B.; Libura, M.; Libura, J.; O'Neill, P. J.; van Dam, P.; van Marck, E. et al. (1997): Influence of investigator experience and microscopic field size on microvessel density in node-negative breast carcinoma. In: Breast Cancer Res. Treat. 42 (2), S. 165–172. Lim, D. S.; Kirsch, D. G.; Canman, C. E.; Ahn, J. H.; Ziv, Y.; Newman, L. S. et al. (1998): ATM binds to beta-adaptin in cytoplasmic vesicles. In: Proc. Natl. Acad. Sci. Lynch, Henry T.; Fusaro, Ramon M.; Lynch, Jane F.; Brand, Randall (2008): Pancreatic cancer and the FAMMM syndrome. In: Fam Cancer 7 (1), S. 103–112. Wittel, Uwe A.; Pandey, Krishan K.; Andrianifahanana, Mahefatiana; Johansson, Sonny L.; Cullen, Diane M.; Akhter, Mohammed P. et al. (2006): Chronic pancreatic inflammation induced by environmental tobacco smoke inhalation in rats. In: Am J Gastroenterol 101 (1), S. 148–159. Riediger, Hartwig; Keck, Tobias; Wellner, Ulrich; Zur Hausen, Axel; Adam, Ulrich; Hopt, Ulrich T.; Makowiec, Frank (2009): The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer. In: J. Gastrointest. Surg. 13 (7), S. 1337– 1344. David C.; Coleman, Joann et al. (2006): 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. In: J Gastrointest Surg 10 (9), S. 1199-210; discussion 1210-1. Auswertung mit ImageJ Weiß; Rzany (2010): Basiswissen Medizinische Statistik. 5. Aufl. Springer. Wittel, Uwe A.; Hopt, Ulrich T.; Batra, Surinder K. (2008): Cigarette smoke-induced pancreatic damage: experimental data. In: Langenbecks Arch Surg 393 (4), S. 581– 588. Hartge, Patricia et al. (2009): Cigarette smoking and pancreatic cancer: a pooled Ouyang, H.; Mou, Lj; Luk, C.; Liu, N.; Karaskova, J.; Squire, J.; Tsao, M. S. (2000): Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. In: Am. J. Pathol. 157 (5), S. 1623–1631. Luttmann, Werner; Bratke, Kai; Küpper, Michael; Myrtek, Daniel (2009): Der Experimentator: Immunologie. 3. Aufl. Heidelberg: Spektrum Akademischer Verlag. Schmitz, Sabine (2009): Der Experimentator: Zellkultur. 2. Aufl. Heidelberg: Spektrum, Akad. Verl. Diese Arbeit wäre nicht ohne die Unterstützung unserer Kooperationspartner der AG Bals in Homburg und AG Heeschen in Madrin möglich gewesen. Auch Herrn Prof. Dr. Wang, M.; Abbruzzese, J. L.; Friess, H.; Hittelman, W. N.; Evans, D. B.; Abbruzzese, M. C. et al. (1998): DNA adducts in human pancreatic tissues and their potential role in carcinogenesis. In: Cancer Res. 58 (1), S. 38–41. Rogakou, E. P.; Pilch, D. R.; Orr, A. H.; Ivanova, V. S.; Bonner, W. M. (1998): DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. In: J Biol Chem 273 (10), S. 5858–5868. Wong, Gilbert Y.; Schroeder, Darrell R.; Carns, Paul E.; Wilson, Jack L.; Martin, David P.; Kinney, Michelle O. et al. (2004): Effect of neurolytic celiac plexus block on pain relief, quality of life, and survival in patients with unresectable pancreatic cancer: a randomized controlled trial. In: JAMA 291 (9), S. 1092–1099. Pontieri, F. E.; Tanda, G.; Orzi, F.; Di Chiara, G. (1996): Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. In: Nature 382 (6588), S. 255–257. Beispielhafte Auswertung mit ImageJ: Es handelt sich um eine von 10 Aufnahmen einer p-ATM-Färbung eines Pankreas in 40-facher Vergrößerung. Im linken Bild ist das sogenannte Zähl-Fenster. Es wird zunächste ein Zelltyp im rechten " Cell-Counter " ausgewählt. Dissin, J.; Mills, L. R.; Mains, D. L.; Black, O.; Webster, P. D. (1975): Experimental induction of pancreatic adenocarcinoma in rats. In: J. Natl. Cancer Inst. 55 (4), S. 857– 864. Porta, Miquel; Fabregat, Xavier; Malats, Núria; Guarner, Luisa; Carrato, Alfredo; Jutta (2005): Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta- analysis. In: Neoplasia 7 (1), S. 17–23. HIF2alpha during early pancreatic tumorigenesis. In: Cancer Res 73 (15), S. 4781– 4790. International Hereditary Pancreatitis Study Group. In: J. Natl. Cancer Inst. 89 (6), S. 442–446. International Pancreatitis Study Group. In: N. Engl. J. Med. 328 (20), S. 1433–1437. Smit, Vincent T.H.B.M; Boot, Angelina J.M; Smits, Alida M.M; Fleuren, Gert Jan; Cornelisse, Cees J.; Bos, Johannes L. (1988): KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. In: Nucl Acids Res 16 (16), S. 7773–7782. Haura, Eric; Chellappan, Srikumar (2006): Nicotine induces cell proliferation by beta- arrestin-mediated activation of Src and Rb-Raf-1 pathways. In: J Clin Invest 116 (8), S. 2208–2217. Y.; Tai, Emily K. K. et al. (2005): Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. In: Mol. Cancer Res. 3 (11), S. 607–615. Villablanca, A. C. (1998): Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro. In: J. Appl. Physiol. 84 (6), S. 2089–2098. Kern, S. E. (1994): p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. In: Cancer Res. 54 (11), S. 3025–3033. Per Mausklick werden alle Zellen des jeweiligen Typs im linken Bild ausgewählt und automatisch im rechten Fenster zusammengezählt. Anhang 113 (2002): Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. In: Radiat. Res. 158 (4), S. 486–492. Sohn, T. A.; Yeo, C. J.; Cameron, J. L.; Koniaris, L.; Kaushal, S.; Abrams, R. A. et al. (2000): Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. In: J Gastrointest Surg 4 (6), S. 567–579. Lowenfels, Albert B.; Maisonneuve, Patrick (2005): Risk factors for pancreatic cancer. Statistische Analysen Histologische Untersuchung Teague Enterprises: Overseas Smoke Exposure System. Hg. v. Teague Enterprises. Mann-Whitney-U-Test der computergestützten PanIN-1a und PanIN-1b-Auszählung der 6-Monats-K/C-Tiere durch die AG Heeschen PanIN-1a PanIN-1b Anhang 114 Sobin, L. H.; Gospodarowicz, M. K.; Wittekind, Ch (2009): TNM classification of malignant tumours. 7th ed. Chichester, West Sussex, UK, Hoboken, NJ: Wiley- Blackwell. Stephen S.; Hainaut, Pierre (2002): Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. In: Oncogene 21 (48), S. 7435–7451. Typ 1 = blau = PanIN-Zelle. Typ 2 = türkis = ADM-Zelle. Typ 3 = grün = positive PanIN-Zelle. Typ 4 = pinkt = positive ADM-Zelle. Powell, J. T. (1998): Vascular damage from smoking: disease mechanisms at the arterial wall. In: Vasc Med 3 (1), S. 21–28. World Health Organisation (2012): WHO Global Report on Mortality Attributable to Tobacco. Mortality attributable to tobacco. Geneva, Switzerland: World Health Organization. Yang, Gao-yun; Zhang, Chun-lei; Liu, Xiang-chen; Qian, Ge; Deng, Dan-qi (2013): Effects of cigarette smoke extracts on the growth and senescence of skin fibroblasts in vitro. In: Int J Biol Sci 9 (6), S. 613–623. Ashish M.; Wu, Xifeng (2013): γ-H2AX level in peripheral blood lymphocytes as a risk predictor for bladder cancer. In: Carcinogenesis. Tuveson, David A.; Shaw, Alice T.; Willis, Nicholas A.; Silver, Daniel P.; Jackson, Erica L.; Chang, Sandy et al. (2004): Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. In: Cancer Cell 5 Scholzen, T.; Gerdes, J. (2000): The Ki-67 protein: from the known and the unknown. Li, Junan; Poi, Ming Jye; Tsai, Ming-Daw (2011): Regulatory Mechanisms of Tumor Suppressor P16 INK4A and Their Relevance to Cancer. In: Biochemistry 50 (25), S. 5566–5582. Trushin, Neil; Akerkar, Shobha et al. (2002): Identification of tobacco-derived compounds in human pancreatic juice. In: Chem Res Toxicol 15 (5), S. 677–685. Thomson, Nicole M.; Kenney, Patrick M.; Peterson, Lisa A. (2003): The pyridyloxobutyl DNA adduct, O6-4-oxo-4-(3-pyridyl)butylguanine, is detected in tissues from 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone-treated A/J mice. In: Chem Res Toxicol Toyooka, Tatsushi; Ibuki, Yuko (2009): Cigarette sidestream smoke induces phosphorylated histone H2AX. In: Mutat. Res. 676 (1-2), S. 34–40. Dominique S.; Severinsen, Marianne T.; Overvad, Kim et al. (2010): Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. In: Int J Cancer 126 (10), S. 2394– 2403. Tanaka, Toshiki; Huang, Xuan; Jorgensen, Ellen; Gietl, Diana; Traganos, Frank; Darzynkiewicz, Zbigniew; Albino, Anthony P. (2007): ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. In: BMC Cell Biol 8, S. 26. Simmermacher, Rebecca K. (2012): 1R5F Brochure New. Online verfügbar unter http://www.ca.uky.edu/refcig/1R5F%20Brochure%20New.pdf, zuletzt aktualisiert am 05.04.2012, zuletzt geprüft am 22.01.2013. Lee, J-H; Paull, T. T. (2007): Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. In: Oncogene 26 (56), S. 7741–7748. Su, G. H.; Hruban, R. H.; Bansal, R. K.; Bova, G. S.; Tang, D. J.; Shekher, M. C. et al. (1999): Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. In: Am. J. Pathol. 154 (6), S. 1835–1840. Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S. (1993): Pancreatic adenocarcinomas frequently show p53 gene mutations. In: Am. J. Weidner, N.; Carroll, P. R.; Flax, J.; Blumenfeld, W.; Folkman, J. (1993): Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. In: Am J Pathol 143 (2), S. 401–409. (2007): Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. In: Am. J. Pathol. 171 (1), S. 263–273. Li, Donghui (2012): Diabetes and pancreatic cancer. In: Mol Carcinog 51 (1), S. 64–74. Coppola, Domenico et al. (2009): Nicotine Promotes Tumor Growth and Metastasis in Mouse Models of Lung Cancer. In: PLoS ONE 4 (10), S. e7524. Pudrith, Charles et al. (2008): Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. In: Cancer Sci 99 (4), S. 696–705. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. In: Autophagy 8 (2), S. 236–251. Elena, Joanne W.; Steplowski, Emily; Yu, Kai; Hartge, Patricia; Tobias, Geoffrey S.; Brotzman, Michelle J. et al. (2012): Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. In: Cancer Causes Control. Outschoorn, Ubaldo E.; Lamb, Rebecca; Hulit, James et al. (2013): Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. In: Cell Cycle 12 (5), S. 818–825. Yao, Hongwei; Sundar, Isaac K.; Gorbunova, Vera; Rahman, Irfan (2013): P21-PARP- 1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence. In: PLoS One 8 (11), S. e80007. Vogelstein, B.; Fearon, E. R.; Hamilton, S. R.; Kern, S. E.; Preisinger, A. C.; Leppert, M. et al. (1988): Genetic alterations during colorectal-tumor development. In: N Engl J Med 319 (9), S. 525–532. RKI (2012): Krebs in Deutschland 2007/2008. Berlin. Online verfügbar unter http://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GB EDownloadsB/KID2012.pdf?__blob=publicationFile, zuletzt aktualisiert am 08.02.2012, zuletzt geprüft am 30.11.2012. et al. (1997): A rat model of pancreatic ductal adenocarcinoma: targeting chemical carcinogens. In: Surgery 122 (1), S. 82–90. Raica, Marius; Cimpean, Anca Maria; Ribatti, Domenico (2009): Angiogenesis in pre- malignant conditions. In: Eur. J. Cancer 45 (11), S. 1924–1934. M. (2000): A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. In: Curr Biol 10 (15), S. 886–895. Shiloh, Yosef (2006): The ATM-mediated DNA-damage response: taking shape. In: Trends Biochem. Sci. 31 (7), S. 402–410. DeMarini, David M. (2004): Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. In: Mutat Res 567 (2-3), S. 447–474. Vetter, I. R.; Wittinghofer, A. (2001): The guanine nucleotide-binding switch in three dimensions. In: Science 294 (5545), S. 1299–1304. monograph Tabakrauch Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Bauchspeicheldrüsenkrebs Der Effekt von volatilem Tabakrauch auf die Karzinogenese des Adenokarzinoms des Pankreas im P48+/Cre; LSL-KRASG12D-Mausmodell Tabakrauch 2015-01-05 Pankreaskarzinom 2014-12-05 Carcinogenese ppn:352392533 K-ras-Mausmodell opus:5875 K-ras DNS-Schädigung Innere Medizin https://doi.org/10.17192/z2014.0790 The effect of volatile tobacco smoke on the carcinogenesis of pancreatic adenocarcinoma in the P48+/Cre; LSL-KRASG12D-mousemodel Medical sciences Medicine Medizin Philipps-Universität Marburg Medizin Epidemiologische Studien belegen, dass regelmäßiger Tabakkonsum ein Hauptrisikofaktor des Adenokarzinoms im Pankreas ist. Es gibt jedoch nur vereinzelte in vivo Studien, welche die Tumorentstehung unter diesem Risikofaktor abbilden. Daher war das Ziel dieser Arbeit die Karzinogenese unter Tabakrauchexposition in einem realitätsnahen in vivo Mausmodell zu untersuchen. Dazu wurden sowohl Wildtyp-K-ras- (WT-) als auch P48+/Cre; LSL-KRASG12D- (K/C-) Mäuse in einer speziellen Expositionskammer 3 bzw. 6 Monate gegenüber volatilem Tabakrauch exponiert. In der Gruppe der WT-Tiere zeigte die Exposition keine Auswirkung auf die Histologie im Sinne einer Tumorinduktion. In allen K/C-Tieren war die Karzinogenese bereits durch die Mutation des ras-Gens induziert: es zeigten sich die Vorläuferläsionen PanIN und ADM. Es wurde die Ausprägung der Vorläuferläsionen und anderer Pathologika in den K/C-Tieren beurteilt. Hierbei zeigte sich bei manueller Quantifizierung kein signifikanter Unterschied zwischen der Gruppe der exponierten und nicht exponierten Mäuse. Eine in Kooperation durchgeführte computergestützte Quantifizierung der histologischen Vorläuferläsionen wies eine signifikant höhere Zahl PanIN-1a-Läsionen in den Pankreata der Raucher nach. Weiterhin wurde untersucht, ob sich die Effekte von Tabakrauch wie DNA-Schaden, Proliferation und Angiogenese nach einer volatilen Exposition immunhistologisch über Markerproteine nachweisen lassen. In einem Vorversuch konnte gezeigt werden, dass es nach Exposition mit einem speziell angefertigten Rauchmedium in humanen duktalen Pankreasepithelzellen (HPDE) zu einer vermehrten Expression von Markern der DNA-Schädigung (γ-H2AX und p-ATR) kommt. In der immunhistolgischen Auswertung (p-ATM) der volatil berauchten Mäuse konnte dies jedoch nicht festgestellt werden. In der Expositions- und Kontrollgruppe zeigte sich außerdem kein Unterschied der Proliferationsraten (Ki-67) und der Angiogenese (CD31). In der in Kooperation durchgeführten computergestützten Auswertung wurde eine vermehrte Bildung von Vorläuferläsionen nach volatiler Exposition und somit ein Voranschreiten der Karzinogenese gezeigt. Um zu untersuchen, ob es letztlich unter volatiler Tabakrauchexposition im K-ras-Mausmodell zu vermehrten Karzinomen kommt, sollte eine erneute Versuchsreihe angeschlossen werden, in der die Abstract 87 Versuchstiere erst in höherem Alter untersucht werden. Die Auswertung sollte auch hier computergestützt erfolgen. urn:nbn:de:hebis:04-z2014-07908 doctoralThesis Angiogenese ths Prof. Dr. Michl P. Michl, P. (Prof. Dr.) application/pdf Epidemiological studies show that regular consumption of tobacco is a major risk factor of pancreatic adenocarcinoma. However, there are only a few in vivo studies that investigate tumor development under the influence of this risk factor. Therefore, the aim of this study was to investigate carcinogenesis following exposure to tobacco smoke in a realistic in vivo mouse model. For this purpose, wild-type K-ras (WT) and P48+/cre; LSL-KRASG12D (K/C) mice were exposed to volatile tobacco smoke in a special experimental chamber for 3 or 6 months. In the WT group no histological effect on tumor induction was found. In all K/C mice carcinogenesis was induced by the mutation of ras before exposure to smoke: they showed development of the precursor lesions PanIN and ADM. In cooperation with an expert pathologist the expression of precursor lesions and other pathologies in the K/C mice were assessed. No significant differences between the groups of exposed and unexposed mice were seen after manual quanitification. A computer-assisted evaluation of the histology, however, found a singificantly higher number of PanIN-1a lesions in the pancreata of smokers. Furthermore, the effects of tobacco smoke such as DNA damage, cell proliferation, and angiogenesis were investigated immunohistochemically by marker proteins after volatile exposure. In vitro, an increased expression of the DNA-damage cascade (γ-H2AX and p-ATR) after exposure to a specially designed “smoke-exposed medium“ was detected in HPDE cells. However, in the immunohistochemical analysis of the smoke-exposed mice no significantly increased DNA damage (p-ATM) was detected. Furthermore, the exposure and control groups showed no difference in cell proliferation rate (Ki-67) and in angiogenesis (CD31). After automated quantification, an increased formation of precursor lesions and thus a progression of carcinogenesis after volatile smoke exposure was detected. To investigate whether volatile tobacco smoke exposure ultimately results in increased cancer in the K-ras mouse, a new series of experiments should be carried out in which the test animals are analyzed at a mature age.